Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 241: 117552, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944692

RESUMO

Spatio-temporal fluctuation of climatic variables with the terrain characteristics and their inter-relationship is a priority for predicting flash-flood-induced landslide hazards over the fragile Himalayas. The present study addressed this anxiety by assimilating satellite data products and auxiliary datasets in the Bhagirathi River basin of the Indian Himalayas. Snow Covered Area (SCA) is a critical indicator of the ecosystem that influenced the flash flood along different terrain features such as Altitude, Hill-Gradient, and Aspect. GIS-based multi-criteria decision analysis (GIS-MCDA) technique is used to analyze the possible landslide zones and flood extent along the river basin, and MODIS Terra (MOD10A2) data products derived annual SCA is 4278 km2 for the year 2021, the analysis of geospatial maps at 25° intervals of Altitude, hill-gradient, and Aspect. The SCA distribution reveals that apart from the Altitude, the Aspect of the hill gradient significantly impacts snow accumulation. Hill-Gradient, ranging from 13.06 to 19.52, occupies 24.7% of the total area, and 45.3 to 51.83 are found without snow. The highest variation of SCA is along the Western direction (9.19%), followed by North-East (8.79%), while the least (3.78%) variance is in the Southwest direction. Additionally, it was found that many bridges, roads, and other properties are under threat in this study area, even with a moderate flash flood. Findings from this study provide the spatiotemporal status of SCA in various geological stress conditions during the last decades and probable landslide zones. This will be a preliminary pathway to policymakers in rehabilitation and early evacuation of human lives due to flash flood occurrence.


Assuntos
Mudança Climática , Ecossistema , Humanos , Monitoramento Ambiental/métodos , Inundações , Fatores Socioeconômicos
2.
Sci Total Environ ; 866: 161334, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36596417

RESUMO

The present study examined the equivalent black carbon (eBC) mass concentrations measured over 10.5 years (September 2005-March 2016) using a 7-wavelength Aethalometer (AE-31) at Mukteshwar, a high-altitude and regional background site in the foothills of Indian central Himalayas. The total spectral absorption coefficient (babs) was divided into three categories: black carbon (BC) and brown carbon (BrC); fossil fuels (FF) and wood/biomass burning (WB/BB); and primary and secondary sources. At the wavelength of 370 nm, a significant BrC contribution (25 %) to the total babs is identified, characterized by a pronounced seasonal variation with winter (December-January-February) maxima (31 %) and post-monsoon (October and November) minima (20 %); whereas, at 660 nm, the contribution of BrC is dramatically less (9 %). Climatologically, the estimated BCFF at 880 nm ranges from 0.25 ± 0.19 µg m-3 in July to 1.17 ± 0.80 µg m-3 in May with the annual average of 0.67 ± 0.63 µg m-3, accounting for 79 % of the BC mass. The maximum BCFF/BC fraction reaches its peak value during the monsoon (July and August, 85 %), indicating the dominance of local traffic emissions due to tourism activities. Further, the highest BCWB concentration observed during pre-monsoon (March-May) suggests the influence of local forest fires along with long-range transported aerosols from the low-altitude plains. The increased contribution of BrC (26 % at 370 nm) and WB absorption (61 % at 370 nm) to the total absorption at the shorter wavelengths suggests that wood burning is one of the major sources of BrC emissions. Secondary BrC absorption accounts for 24 % [91 %] of the total absorption [BrC absorption] at 370 nm, implying the dominance of secondary sources in BrC formation. A trend analysis for the measured BC concentration shows a statistically significant increasing trend with a slope of 0.02 µgm-3/year with a total increase of about 22 % over the study period. A back trajectory-based receptor model, potential source contribution function (PSCF), was used to identify the potential regional source region of BC. The main source regions of BC are the northwest states of India in the IGP region and the northeast Pakistan region.

3.
Geophys Res Lett ; 48(20): e2021GL093796, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34924636

RESUMO

Aerosols emitted in densely populated and industrialized Indo-Gangetic Plain, one of the most polluted regions in the world, modulate regional climate, monsoon, and Himalayan glacier retreat. Thus, this region is important for understanding aerosol perturbations and their resulting impacts on atmospheric changes during COVID-19 lockdown period, a natural experimental condition created by the pandemic. By analyzing 5 years (2016-2020) data of aerosols and performing a radiative transfer calculation, we found that columnar and near-surface aerosol loadings decreased, leading to reductions in radiative cooling at the surface and top of the atmosphere and atmospheric warming during lockdown period. Further, satellite data analyses showed increases in cloud optical thickness and cloud-particle effective radius and decrease in lower tropospheric air temperature during lockdown period. These results indicate critical influences of COVID-19 lockdown on regional climate and water cycle over Indo-Gangetic Plain, emphasizing need for further studies from modeling perspectives.

4.
Sci Total Environ ; 801: 149739, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467915

RESUMO

This study examines the spectral properties and source characteristics of absorbing aerosols (BC: Black Carbon; BrC: Brown Carbon, based on aethalometer measurements) in the urban background of Athens during December 2016-February 2017. Using common assumptions regarding the spectral dependence of absorption due to BC (AAEBC = 1) and biomass burning (AAEbb = 2), and calculating an optimal AAEff value for the dataset (1.18), the total spectral absorption was decomposed into five components, corresponding to absorption of BC and BrC from fossil-fuel (ff) combustion and biomass burning (bb), and to secondary BrC estimated using the BC-tracer minimum R-squared (MRS) method. Substantial differences in the contribution of various components to the total absorption were found between day and night, due to differences in emissions and meteorological dynamics, while BrC and biomass burning aerosols presented higher contributions at shorter wavelengths. At 370 nm, the absorption due to BCff contributed 36.3% on average, exhibiting a higher fraction (58.1%) during daytime, while the mean BCbb absorption was estimated at 18.4%. The mean absorption contributions due to BrCff, BrCbb and BrCsec were 6.7%, 32.3% and 4.9%, respectively. The AbsBCff,370 component maximized during the morning traffic hours and was strongly correlated with NOx (R2 = 0.76) and CO (R2 = 0.77), while a similar behavior was seen for the AbsBrCff,370 component. AbsBCbb and AbsBrCbb levels escalated during nighttime and were highly associated with nss-K+ and with the organic aerosol (OA) components related to fresh and fast-oxidized biomass burning (BBOA and SV-OOA) as obtained from ACSM measurements. Multiple linear regression was used to attribute BrC absorption to five OA components and to determine their absorption contributions and efficiencies, revealing maximum contributions of BBOA (33%) and SV-OOA (21%). Sensitivity analysis was performed in view of the methodological uncertainties and supported the reliability of the results, which can have important implications for radiative transfer models.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Grécia , Material Particulado/análise , Reprodutibilidade dos Testes
5.
Sci Total Environ ; 761: 143188, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33143923

RESUMO

Studies in aerosol properties, types and sources in the Himalayas are important for atmospheric and climatic issues due to high aerosol loading in the neighboring plains. This study uses in situ measurements of aerosol optical and microphysical properties obtained during the Ganges Valley Aerosol eXperiment (GVAX) at Nainital, India over the period June 2011-March 2012, aiming to identify key aerosol types and mixing states for two particle sizes (PM1 and PM10). Using a classification matrix based on SAE vs. AAE thresholds (scattering vs. absorption Ångström exponents, respectively), seven aerosol types are identified, which are highly dependent on particle size. An aerosol type named "large/BC mix" dominates in both PM1 (45.4%) and PM10 (46.9%) mass, characterized by aged BC mixed with other aerosols, indicating a wide range of particle sizes and mixing states. Small particles with low spectral dependence of the absorption (AAE < 1) account for 31.6% and BC-dominated aerosols for 14.8% in PM1, while in PM10, a large fraction (39%) corresponds to "large/low-absorbing" aerosols and only 3.9% is characterized as "BC-dominated". The remaining types consist of mixtures of dust and local emissions from biofuel burning and display very small fractions. The main optical properties e.g. spectral scattering, absorption, single scattering albedo, activation ratio, as well as seasonality and dependence on wind speed and direction of identified types are examined, revealing a large influence of air masses originating from the Indo-Gangetic Plains. This indicates that aerosols over the central Himalayas are mostly composed by mixtures of processed and transported polluted plumes from the plains. This is the first study that identifies key aerosol populations in the central Indian Himalayas based on in situ measurements and the results are highly important for aerosol-type inventories, chemical transport models and reducing the uncertainty in aerosol radiative forcing over the third pole.

6.
Atmos Pollut Res ; 12(2): 225-242, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36915905

RESUMO

The current study examines the impact of the COVID-19 lockdown (25th March until May 17, 2020) period in particulate matter (PM) concentrations and air pollutants (NOx, SO2, CO, NH3, and O3) at 63 stations located at Delhi, Uttar Pradesh and Haryana states within the Delhi-NCR, India. Large average reductions are recorded between the stations in each state such as PM10 (-46 to -58%), PM2.5 (-49 to -55%), NO2 (-27 to -58%), NO (-54% to -59%), CO (-4 to -44%), NH3 (-2 to -38%), while a slight increase is observed for O3 (+4 to +6%) during the lockdown period compared to same periods in previous years. Furthermore, PM and air pollutants are significantly reduced during lockdown compared to the respective period in previous years, while a significant increase in pollution levels is observed after the re-opening of economy. The meteorological changes were rather marginal between the examined periods in order to justify such large reductions in pollution levels, which are mostly attributed to traffic-related pollutants (NOx, CO and road-dust PM). The WRF-CHIMERE model simulations reveal a remarkable reduction in PM2.5, NO2 and SO2 levels over whole Indian subcontinent and mostly over urban areas, due to limitation in emissions from the traffic and industrial sectors. A PM2.5 reduction of -48% was simulated in Delhi in great consistency with measurements, rendering the model as a powerful tool for simulations of lower pollution levels during lockdown period.

7.
Sci Total Environ ; 734: 139354, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470663

RESUMO

Analysis of the climatology of aerosol properties is performed over Hanle (4500 m) and Merak (4310 m), two remote-background sites in the western trans-Himalayas, based on eleven years (2008-2018) of sun/sky radiometer (POM-01, Prede) measurements. The two sites present very similar atmospheric conditions and aerosol properties allowing us to examine them as continuous single-data series. The annual average aerosol optical depth at 500 nm (AOD500) is 0.04 ± 0.03, associated with an Ångström exponent (AE440-870) of 0.58 ± 0.35 and a single scattering albedo (SSA500) of 0.95 ± 0.05. AOD500 exhibits higher values in May (~0.07) and lower in winter (~0.03), while AE400-870 minimizes in spring, indicating influence by coarse-mode dust aerosols, either emitted regionally or long-range transported. The de-convolution of AOD500 into fine and coarse modes justifies the aerosol seasonality and sources, while the marginal diurnal variation in all aerosol properties reveals a weak influence from local sources, except for some few aerosol episodes. The aerosol-volume size distribution presents a mode value at ~10 µm with secondary peaks at accumulation (~ 2 µm) and fine modes (~0.03 µm) and low variability between the seasons. A classification of the aerosol types based on the fine-mode fraction (FMF) vs. SSA500 relationship reveals the dominance of aerosols in the FMF range of 0.4-0.6, characterized as mixed (39%), followed by fine aerosols with high scattering efficiency (26%), while particles related to dust contribute ~21%, with low fractions of fine-absorbing aerosols (~13%). The aerosol radiative forcing (ARF) estimates reveal a small cooling effect at the top of the atmosphere (-1.3 Wm-2), while at the surface, the ARF ranges from -2 Wm-2 to -6 Wm-2 on monthly basis. The monthly-mean atmospheric radiative forcing (~1 to 4 Wm-2) leads to heating rates of 0.04 to 0.13 K day-1. These ARF values are higher than the global averages and may cause climate implications over the trans-Himalayan region.

8.
Sci Total Environ ; 708: 135019, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791764

RESUMO

This study analyses 4-years of continuous 7-λ Aethalometer (AE-33) measurements in an urban-background environment of Athens, to resolve the spectral absorption coefficients (babs) for black carbon (BC) and brown carbon (BrC). An important BrC contribution (23.7 ± 11.6%) to the total babs at 370 nm is estimated for the period May 2015-April 2019, characterized by a remarkable seasonality with winter maximum (33.5 ± 13.6%) and summer minimum (18.5 ± 8.1%), while at longer wavelengths the BrC contribution is significantly reduced (6.8 ± 3.6% at 660 nm). The wavelength dependence of the total babs gives an annual-mean AAE370-880 of 1.31, with higher values in winter night-time. The BrC absorption and its contribution to babs presents a large increase reaching up to 39.1 ± 13.6% during winter nights (370 nm), suggesting residential wood burning (RWB) emissions as a dominant source for BrC. This is supported by strong correlations of the BrC absorption with OC, EC, the fragment ion m/z 60 derived from ACSM and PMF-analyzed organic fractions related to biomass burning (e.g. BBOA). In contrast, BrC absorption decreases significantly during daytime as well as in the warm period, reaching to a minimum during the early-afternoon hours in all seasons due to photo-chemical degradation. Estimated secondary BrC absorption is practically evident only during winter night-time, implying the fast oxidation of BrC species from RWB emissions. Changes in mixing-layer height do not significantly affect the BrC absorption in winter, while they play a major role in summer.

9.
Arch Environ Contam Toxicol ; 77(2): 214-222, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31168647

RESUMO

All of India's megacities are experiencing acute air pollution problems due to the accelerated urbanization/industrialization and rapid economic growth. Nowadays, environmental pollution due to particulate matter is a major threat to human health and our regional air quality. Long-term air pollution data with the high spatial and temporal resolution are required to understand regional air quality and its effects on environmental degradation and human health. In view of the above, the particulate matter (PM2.5: particles with diameters less than 2.5 µm and PM10: particles with diameters less than 10 µm) were measured from January 2017 to March 2018 at five locations (PM2.5 at 3 sites and PM10: at 2 sites) across the Bangalore city, India. The measured concentrations indicated that PM2.5 and PM10 concentrations in Bangalore exceeded the World Health Organization's air quality standards although the PM2.5 values did meet the Indian National Ambient Air Quality Standards (NAAQS). The PM10 NAAQS was exceeded at one site. Temporal patterns showed a strong evening peak at all sites and morning rush hour peaks of varying strength. Season peaks were observed in the winter or premonsoon seasons again with variations among the five sites. Lower pairwise correlation coefficients among the sites suggest that the PM sources were largely localized. The role of meteorological parameters (MP) was studied, and it was observed that MP play a vital role in the accumulation of PM2.5. During calm wind condition (WS < 0.5 m/s), the concentrations of PM2.5 has increased by 17%, indicating localized sources; however, in the case of PM10, it was opposite. Annually, the highest concentrations of PM2.5 (> 30 µg/ m3) and PM10 (> 75 µg/m3) over receptor side were observed during lower wind speeds (< 2 knots), which indicate that the transportation does not play any crucial role in higher concentrations of PM over Bangalore.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar , Cidades , Monitoramento Ambiental , Índia , Tamanho da Partícula , Estações do Ano , Análise Espaço-Temporal , Urbanização , Tempo (Meteorologia)
10.
Sci Total Environ ; 605-606: 124-138, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28662426

RESUMO

The present work examines the influence of relative humidity (RH), physical and optical aerosol properties on the light-scattering enhancement factor [f(RH=85%)] over central Indian Himalayas during the Ganges Valley Aerosol Experiment (GVAX). The aerosol hygroscopic properties were measured by means of DoE/ARM (US Department of Energy, Atmospheric Radiation Measurement) mobile facility focusing on periods with the regular instrumental operation (November-December 2011). The measured optical properties include aerosol light-scattering (σsp) and absorption (σap) coefficients and the intensive parameters i.e., single scattering albedo (SSA), scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and light scattering enhancement factor (f(RH)=σsp(RH, λ)/σsp(RHdry, λ)). The measurements were separated for sub-micron (<1µm, D1µm) and particles with diameter<10µm (D10µm) in order to examine the influence of particle size on f(RH) and enhancement rate (γ). The particle size affects the aerosol hygroscopicity since mean f(RH=85%) of 1.27±0.12 and 1.32±0.14 are found for D10µm and D1µm, respectively. These f(RH) values are relatively low suggesting the enhanced presence of soot and carbonaceous particles from biomass burning activities, which is verified via backward air-mass trajectories. Similarly, the light-scattering enhancement rates are ~0.20 and 0.17 for the D1µm and D10µm particles, respectively. However, a general tendency for increasing f(RH) and γ is shown for higher σsp and σap values indicating the presence of rather aged smoke plumes, coated with industrial aerosols over northern India, with mean SSA, SAE and AAE values of 0.92, 1.00 and 1.15 respectively. On the other hand, a moderate-to-small dependence of f(RH) and γ on SAE, AAE, and SSA was observed for both particle sizes. Furthermore, f(RH) exhibits an increasing tendency with the number of cloud condensation nuclei (NCCN) indicating larger particle hygroscopicity but without significant dependence on the activation ratio.

11.
Sci Total Environ ; 599-600: 165-180, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475910

RESUMO

Long-term measurements of spectral aerosol optical depth (AOD) using sun/sky radiometer for a period of five years (2009-2014) from the remote island location at Kavaratti (KVT; 10.56°N, 72.64°E) in the southern Arabian sea have been analysed. Climatologically, AODs decrease from October to reach maximum of ~0.6 (at 500nm) in March, followed by a sudden fall towards May. Significant modulations of intra-seasonal timescales over this general pattern are noticed due to the changes in the relative strength of distinctively different sources. The corresponding changes in aerosol inversion parameters reveal the presence of coarse-mode aerosols during spring and fine-mode absorbing aerosols in autumn and winter months. An overall dominance of a mixed type of aerosols (~41%) with maximum in winter (~53%) was found via the AOD500 vs. Ångström exponent (α440-870) relationship, while biomass-burning aerosols or thick urban/industrial plumes contribute to ~19%. Spectral dependence of Ångström exponent and aerosol absorbing properties were used to identify the aerosol types and its modification processes. Based on air mass back trajectory analysis, we revealed that the advection of aerosols from Indian subcontinent and western regions plays a major role in modifying the optical properties of aerosols over the observational site. The shortwave aerosol direct radiative forcing estimated via SBDART model ranges from -11.00Wm-2 to -7.38Wm-2, -21.51Wm-2 to -14.33Wm-2 and 3.17Wm-2 and 10.0Wm-2 at top of atmosphere, surface and within the atmosphere, respectively. This atmospheric forcing translates into heating rate of 0.62-1.04Kday-1. Furthermore, the vertical profiles of aerosols and heating rate exhibit significant increase in lower (during winter and autumn) and mid troposphere (during spring). This may cause serious climate implications over Kavaratti with further consequences on cloud microphysics and monsoon rainfall.

12.
Sci Total Environ ; 575: 612-627, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27616711

RESUMO

Aerosol optical properties are analyzed for the first time over Desalpar (23.74°N, 70.69°E, 30m above mean sea level) a remote site in western India during October 2014 to August 2015. Spectral aerosol optical depth (AOD) measurements were performed using the CIMEL CE-318 automatic Sun/sky radiometer. The annual-averaged AOD500 and Ångström exponent (α440-870) values are found to be 0.43±0.26 and 0.69±0.39, respectively. On the seasonal basis, high AOD500 of 0.45±0.30 and 0.61±0.34 along with low α440-870 of 0.41±0.27 and 0.41±0.35 during spring (March-May) and summer (June-August), respectively, suggest the dominance of coarse-mode aerosols, while significant contribution from anthropogenic sources is observed in autumn (AOD500=0.47±0.26, α440-870=1.02±0.27). The volume size distribution and the spectral single-scattering albedo also confirm the presence of coarse-mode aerosols during March-August. An overall dominance of a mixed type of aerosols (~56%) mostly from October to February is found via the AOD500 vs α440-870 relationship, while marine aerosols contribute to ~18%. Spectral dependence of α and its second derivative (α') are also used for studying the aerosol modification processes. The average direct aerosol radiative forcing (DARF) computed via the SBDART model is estimated to range from -27.08Wm-2 to -10.74Wm-2 at the top of the atmosphere, from -52.21Wm-2 to -21.71Wm-2 at the surface and from 10.97Wm-2 to 26.54Wm-2 within the atmosphere. This atmospheric forcing translates into heating rates of 0.31-0.75Kday-1. The aerosol properties and DARF are also examined for different trajectory clusters in order to identify the sources and to assess the influence of long-range transported aerosols over Desalpar.

13.
Environ Sci Pollut Res Int ; 23(24): 25467-25484, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27704378

RESUMO

Spectral aerosol optical depth (AOD) measurements obtained from multi-wavelength radiometer under cloudless conditions over Doon Valley, in the foothills of the western Himalayas, are analysed during the period January 2007 to December 2012. High AOD values of 0.46 ± 0.08 and 0.52 ± 0.1 at 500 nm, along with low values of Ångström exponent (0.49 ± 0.01 and 0.44 ± 0.03) during spring (March-May) and summer (June-August), respectively, suggest a flat AOD spectrum indicative of coarse-mode aerosol abundance compared with winter (December-February) and autumn (September-November), which are mostly dominated by fine aerosols from urban/industrial emissions and biomass burning. The columnar size distributions (CSD) retrieved from the King's inversion of spectral AOD exhibit bimodal size patterns during spring and autumn, while combinations of the power-law and unimodal distributions better simulate the retrieved CSDs during winter and summer. High values of extinction coefficient near the surface (∼0.8-1.0 km-1 at 532 nm) and a steep decreasing gradient above are observed via CALIPSO profiles in autumn and winter, while spring and summer exhibit elevated aerosol layers between ∼1.5 and 3.5 km due to the presence of dust. The particle depolarisation ratio shows a slight increasing trend with altitude, with higher values in spring and summer indicative of non-spherical particles of dust origin. The aerosol-climate implications are evaluated via the aerosol radiative forcing (ARF), which is estimated via the synergy of OPAC and SBDART models. On the monthly basis, the ARF values range from ∼ -30 to -90 W m-2 at the surface, while aerosols cause an overall cooling effect at the top of atmosphere (approx. -5 to -15 W m-2). The atmospheric heating via aerosol absorption results in heating rates of 1.2-1.6 K day-1 during March-June, which may contribute to changes in monsoon circulation over northern India and the Himalayas.


Assuntos
Aerossóis/química , Altitude , Poeira/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Movimentos do Ar , Poluentes Atmosféricos/análise , Atmosfera , Clima , Meio Ambiente , Índia , Temperatura
14.
Sci Total Environ ; 573: 894-905, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27599053

RESUMO

The ground and vertical profiles of particulate matter (PM) were mapped as part of a pilot study using a Tethered balloon within the lower troposphere (1000m) during the foggy episodes in the winter season of 2015-16 in New Delhi, India. Measurements of black carbon (BC) aerosol and PM <2.5 and 10µm (PM2.5 & PM10 respectively) concentrations and their associated particulate optical properties along with meteorological parameters were made. The mean concentrations of PM2.5, PM10, BC370nm, and BC880nm were observed to be 146.8±42.1, 245.4±65.4, 30.3±12.2, and 24.1±10.3µgm-3, respectively. The mean value of PM2.5 was ~12 times higher than the annual US-EPA air quality standard. The fraction of BC in PM2.5 that contributed to absorption in the shorter visible wavelengths (BC370nm) was ~21%. Compared to clear days, the ground level mass concentrations of PM2.5 and BC370nm particles were substantially increased (59% and 24%, respectively) during the foggy episode. The aerosol light extinction coefficient (σext) value was much higher (mean: 610Mm-1) during the lower visibility (foggy) condition. Higher concentrations of PM2.5 (89µgm-3) and longer visible wavelength absorbing BC880nm (25.7µgm-3) particles were observed up to 200m. The BC880nm and PM2.5 aerosol concentrations near boundary layer (1km) were significantly higher (~1.9 and 12µgm-3), respectively. The BC (i.e BCtot) aerosol direct radiative forcing (DRF) values were estimated at the top of the atmosphere (TOA), surface (SFC), and atmosphere (ATM) and its resultant forcing were - 75.5Wm-2 at SFC indicating the cooling effect at the surface. A positive value (20.9Wm-2) of BC aerosol DRF at TOA indicated the warming effect at the top of the atmosphere over the study region. The net DRF value due to BC aerosol was positive (96.4Wm-2) indicating a net warming effect in the atmosphere. The contribution of fossil and biomass fuels to the observed BC aerosol DRF values was ~78% and ~22%, respectively. The higher mean atmospheric heating rate (2.71Kday-1) by BC aerosol in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Serious detrimental impacts on regional climate due to the high concentrations of BC and PM (especially PM2.5) aerosol are likely based on this study and suggest the need for immediate, stringent measures to improve the regional air quality in the northern India.

15.
Sci Total Environ ; 521-522: 431-45, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25864155

RESUMO

Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO4(2-) and NO3(-)) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO4(2-) and NO3(-)). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6µgm(-3) (annual mean of 124.6±87.9µgm(-3)) exhibiting higher night-time (129.4µgm(-3)) than daytime (103.8µgm(-3)) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3(-)and SO4(2-), which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R(2)=0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~1.8-2.0Kday(-1)) due to agricultural burning effects during the 2012 post-monsoon season.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Fuligem/análise , Carbono/análise , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...