Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
ACS Nano ; 18(3): 2047-2065, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38166155

RESUMO

The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.


Assuntos
Condrogênese , Proteômica , Nanogéis , Hidrogéis/farmacologia , Diferenciação Celular , Engenharia Tecidual
2.
APL Bioeng ; 7(1): 016114, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968453

RESUMO

In this paper, we stimulated M1-like macrophages (obtained from U937 cells) with low-intensity pulsed ultrasound (LIPUS) to lower pro-inflammatory cytokine production. A systematic screening of different frequencies, intensities, duty cycles, and exposure times was performed. The optimal stimulation conditions leading to a marked decrease in the release of inflammatory cytokines were determined to be 38 kHz, 250 mW/cm2, 20%, and 90 min, respectively. Using these parameters, we verified that up to 72 h LIPUS did not affect cell viability, resulting in an increase in metabolic activity and in a reduction of reactive oxygen species (ROS) production. Moreover, we found that two mechanosensitive ion channels (PIEZO1 and TRPV1) were involved in the LIPUS-mediated cytokine release modulation. We also assessed the role of the nuclear factor κB (NF-κB) signaling pathway and observed an enhancement of actin polymerization. Finally, transcriptomic data suggested that the bioeffects of LIPUS treatment occur through the modulation of p38 MAPK signaling pathway.

3.
Magn Reson Med ; 89(6): 2171-2185, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656135

RESUMO

PURPOSE: To develop an efficient MRI pulse sequence to simultaneously measure multiple parameters that have been shown to correlate with tissue nonviability following thermal therapies. METHODS: A 3D segmented EPI pulse sequence was used to simultaneously measure proton resonance frequency shift (PRFS) MR thermometry (MRT), T1 relaxation time, and shear wave velocity induced by focused ultrasound (FUS) push pulses. Experiments were performed in tissue mimicking gelatin phantoms and ex vivo bovine liver. Using a carefully designed FUS triggering scheme, a heating duty cycle of approximately 65% was achieved by interleaving FUS ablation pulses with FUS push pulses to induce shear waves in the tissue. RESULTS: In phantom studies, temperature increases measured with PRFS MRT and increases in T1 correlated with decreased shear wave velocity, consistent with material softening with increasing temperature. During ablation in ex vivo liver, temperature increase measured with PRFS MRT initially correlated with increasing T1 and decreasing shear wave velocity, and after tissue coagulation with decreasing T1 and increasing shear wave velocity. This is consistent with a previously described hysteresis in T1 versus PRFS curves and increased tissue stiffness with tissue coagulation. CONCLUSION: An efficient approach for simultaneous and dynamic measurements of PRSF, T1 , and shear wave velocity during treatment is presented. This approach holds promise for providing co-registered dynamic measures of multiple parameters, which correlates to tissue nonviability during and following thermal therapies, such as FUS.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Bovinos , Prótons , Ultrassonografia , Temperatura , Imageamento por Ressonância Magnética , Imagens de Fantasmas
4.
Front Immunol ; 13: 1038347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569907

RESUMO

Introduction: In situ tumor ablation releases a unique repertoire of antigens from a heterogeneous population of tumor cells. High-intensity focused ultrasound (HIFU) is a completely noninvasive ablation therapy that can be used to ablate tumors either by heating (thermal (T)-HIFU) or by mechanical disruption (mechanical (M)-HIFU). How different HIFU ablation techniques compare with respect to their antigen release profile, their activation of responder T cells, and their ability to synergize with immune stimuli remains to be elucidated. Methods and results: Here, we compare the immunomodulatory effects of T-HIFU and M-HIFU ablation with or without the TLR9 agonist CpG in the ovalbumin-expressing lymphoma model EG7. M-HIFU ablation alone, but much less so T-HIFU, significantly increased dendritic cell (DC) activation in draining lymph nodes (LNs). Administration of CpG following T- or M-HIFU ablation increased DC activation in draining LNs to a similar extend. Interestingly, ex vivo co-cultures of draining LN suspensions from HIFU plus CpG treated mice with CD8+ OT-I T cells demonstrate that LN cells from M-HIFU treated mice most potently induced OT-I proliferation. To delineate the mechanism for the enhanced anti-tumor immune response induced by M-HIFU, we characterized the RNA, DNA and protein content of tumor debris generated by both HIFU methods. M-HIFU induced a uniquely altered RNA, DNA and protein profile, all showing clear signs of fragmentation, whereas T-HIFU did not. Moreover, western blot analysis showed decreased levels of the immunosuppressive cytokines IL-10 and TGF-ß in M-HIFU generated tumor debris compared to untreated tumor tissue or T-HIFU. Conclusion: Collectively, these results imply that M-HIFU induces a unique context of the ablated tumor material, enhancing DC-mediated T cell responses when combined with CpG.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Animais , Camundongos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ativação Linfocitária , Adjuvantes Imunológicos , Células Dendríticas
5.
Sci Rep ; 12(1): 9095, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641597

RESUMO

Magnetic Resonance (MR) Imaging-guided High Intensity focused Ultrasound (MRgHIFU) is a non-invasive, non-ionizing thermal ablation therapy that is particularly interesting for the palliative or curative treatment of musculoskeletal tumors. We introduce a new modular MRgHIFU device that allows the ultrasound transducer to be positioned precisely and interactively over the body part to be treated. A flexible, MR-compatible supporting structure allows free positioning of the transducer under MRI/optical fusion imaging guidance. The same structure can be rigidified using pneumatic depression, holding the transducer rigidly in place. Targeting accuracy was first evaluated in vitro. The average targeting error of the complete process was found to be equal to 5.4 ± 2.2 mm in terms of focus position, and 4.7° ± 2° in terms of transducer orientation. First-in-man feasibility is demonstrated on a patient suffering from important, uncontrolled pain from a bone metastasis located in the forearm. The 81 × 47 × 34 mm3 lesion was successfully treated using five successive positions of the transducer, under real-time monitoring by MR Thermometry. Significant pain palliation was observed 3 days after the intervention. The system described and characterized in this study is a particularly interesting modular, low-cost MRgHIFU device for musculoskeletal tumor therapy.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Termometria , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Dor
6.
Ultrasound Med Biol ; 48(3): 422-436, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34863589

RESUMO

The blood-brain barrier (BBB) is the most important obstacle to delivery of therapeutics to the central nervous system. Low-intensity pulsed focused ultrasound (FUS) in combination with microbubbles applied under magnetic resonance imaging (MRI) control provides a non-invasive and safe technique for BBB opening (BBBo). In rodent models, however, settings and application protocols differ significantly. Depending on the strain and size, important variables include ultrasound attenuation and sound field distortion caused by the skull. We examined the ultrasound attenuation of the skull of Wistar rats using a targeted FUS system. By modifying the transducer elements and by varying and simulating the acoustic field of the FUS system, we measured a skull attenuation of about 60%. To evaluate potential application of the targeted FUS system in genetically modified animals with increased sensitivity to brain hemorrhage caused by vascular dysfunction, we assessed safety in healthy animals. Histological and MRI analyses of the central nervous system revealed an increase in the number and severity of hyperacute bleeds with focal pressure. At a pressure of 0.4 MPa, no bleeds were induced, albeit at the cost of a weaker hyperintense MRI signal post BBBo. These results indicate a relationship between pressure and the dimension of permeabilization.


Assuntos
Barreira Hematoencefálica , Microbolhas , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética , Ratos , Ratos Wistar , Transdutores
7.
J Neurosurg ; : 1-11, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798617

RESUMO

OBJECTIVE: Surgery can be highly effective for the treatment of medically intractable, neurological disorders, such as drug-resistant focal epilepsy. However, despite its benefits, surgery remains substantially underutilized due to both surgical concerns and nonsurgical impediments. In this work, the authors characterized a noninvasive, nonablative strategy to focally destroy neurons in the brain parenchyma with the goal of limiting collateral damage to nontarget structures, such as axons of passage. METHODS: Low-intensity MR-guided focused ultrasound (MRgFUS), together with intravenous microbubbles, was used to open the blood-brain barrier (BBB) in a transient and focal manner in rats. The period of BBB opening was exploited to focally deliver to the brain parenchyma a systemically administered neurotoxin (quinolinic acid) that is well tolerated peripherally and otherwise impermeable to the BBB. RESULTS: Focal neuronal loss was observed in targeted areas of BBB opening, including brain regions that are prime objectives for epilepsy surgery. Notably, other structures in the area of neuronal loss, including axons of passage, glial cells, vasculature, and the ventricular wall, were spared with this procedure. CONCLUSIONS: These findings identify a noninvasive, nonablative approach capable of disconnecting neural circuitry while limiting the neuropathological consequences that attend other surgical procedures. Moreover, this strategy allows conformal targeting, which could enhance the precision and expand the treatment envelope for treating irregularly shaped surgical objectives located in difficult-to-reach sites. Finally, if this strategy translates to the clinic, the noninvasive nature and specificity of the procedure could positively influence both physician referrals for and patient confidence in surgery for medically intractable neurological disorders.

8.
IEEE Trans Biomed Eng ; 68(3): 893-904, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32784128

RESUMO

OBJECTIVE: This paper presents and evaluates a breast-specific magnetic resonance guided focused ultrasound (MRgFUS) system. A first-in-human evaluation demonstrates the novel hardware, a sophisticated tumor targeting algorithm and a volumetric magnetic resonance imaging (MRI) protocol. METHODS: At the time of submission, N = 10 patients with non-palpable T0 stage breast cancer have been treated with the breast MRgFUS system. The described tumor targeting algorithm is evaluated both with a phantom test and in vivo during the breast MRgFUS treatments. Treatments were planned and monitored using volumetric MR-acoustic radiation force imaging (MR-ARFI) and temperature imaging (MRTI). RESULTS: Successful technical treatments were achieved in 80 % of the patients. All patients underwent the treatment with no sedation and 60 % of participants had analgesic support. The total MR treatment time ranged from 73 to 114 minutes. Mean error between desired and achieved targeting in a phantom was 2.9 ±1.8 mm while 6.2 ±1.9 mm was achieved in patient studies, assessed either with MRTI or MR-ARFI measurements. MRTI and MR-ARFI were successful in 60 % and 70 % of patients, respectively. CONCLUSION: The targeting accuracy allows the accurate placement of the focal spot using electronic steering capabilities of the transducer. The use of both volumetric MRTI and MR-ARFI provides complementary treatment planning and monitoring information during the treatment, allowing the treatment of all breast anatomies, including homogeneously fatty breasts.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Protocolos Clínicos , Humanos , Imagens de Fantasmas , Ultrassonografia
9.
J Vis Exp ; (163)2020 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33044450

RESUMO

Surgical intervention can be quite effective for treating certain types of medically intractable neurological diseases. This approach is particularly useful for disorders in which identifiable neuronal circuitry plays a key role, such as epilepsy and movement disorders. Currently available surgical modalities, while effective, generally involve an invasive surgical procedure, which can result in surgical injury to non-target tissues. Consequently, it would be of value to expand the range of surgical approaches to include a technique that is both non-invasive and neurotoxic. Here, a method is presented for producing focal, neuronal lesions in the brain in a non-invasive manner. This approach utilizes low-intensity focused ultrasound together with intravenous microbubbles to transiently and focally open the Blood Brain Barrier (BBB). The period of transient BBB opening is then exploited to focally deliver a systemically administered neurotoxin to a targeted brain area. The neurotoxin quinolinic acid (QA) is normally BBB-impermeable, and is well-tolerated when administered intraperitoneally or intravenously. However, when QA gains direct access to brain tissue, it is toxic to the neurons. This method has been used in rats and mice to target specific brain regions. Immediately after MRgFUS, successful opening of the BBB is confirmed using contrast enhanced T1-weighted imaging. After the procedure, T2 imaging shows injury restricted to the targeted area of the brain and the loss of neurons in the targeted area can be confirmed post-mortem utilizing histological techniques. Notably, animals injected with saline rather than QA do demonstrate opening of the BBB, but dot not exhibit injury or neuronal loss. This method, termed Precise Intracerebral Non-invasive Guided surgery (PING) could provide a non-invasive approach for treating neurological disorders associated with disturbances in neural circuitry.


Assuntos
Encéfalo/patologia , Neurônios/patologia , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/cirurgia , Camundongos , Microbolhas , Ratos
10.
Contrast Media Mol Imaging ; 2019: 6341545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866799

RESUMO

Low-intensity focused ultrasound (FUS), combined with microbubbles, is able to locally, and noninvasively, open the blood-brain barrier (BBB), allowing nanoparticles to enter the brain. We present here a study on the diffusion process of gadolinium-based MRI contrast agents within the brain extracellular space after ultrasound-induced BBB permeabilization. Three compounds were tested (MultiHance, Gadovist, and Dotarem). We characterized their diffusion through in vivo experimental tests supported by theoretical models. Specifically, by estimation of the free diffusion coefficients from in vitro studies and of apparent diffusion coefficients from in vivo experiments, we have assessed tortuosity in the right striatum of 9 Sprague Dawley rats through a model correctly describing both vascular permeability as a function of time and diffusion processes occurring in the brain tissue. This model takes into account acoustic pressure, particle size, blood pharmacokinetics, and diffusion rates. Our model is able to fully predict the result of a FUS-induced BBB opening experiment at long space and time scales. Recovered values of tortuosity are in agreement with the literature and demonstrate that our improved model allows us to assess that the chosen permeabilization protocol preserves the integrity of the brain tissue.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Permeabilidade Capilar , Meios de Contraste/farmacocinética , Corpo Estriado/diagnóstico por imagem , Compostos Heterocíclicos/farmacocinética , Meglumina/análogos & derivados , Microbolhas , Nanoconjugados , Compostos Organometálicos/farmacocinética , Fosfolipídeos/farmacocinética , Hexafluoreto de Enxofre/farmacocinética , Ondas Ultrassônicas , Algoritmos , Animais , Barreira Hematoencefálica/efeitos da radiação , Corpo Estriado/metabolismo , Difusão , Espaço Extracelular , Masculino , Meglumina/farmacocinética , Nanoconjugados/química , Tamanho da Partícula , Imagens de Fantasmas , Ratos , Ratos Sprague-Dawley
11.
Int J Hyperthermia ; 34(8): 1225-1235, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29378441

RESUMO

INTRODUCTION: Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) treatments of mobile organs require locking the HIFU beam on the targeted tissue to maximise heating efficiency. We propose to use a standalone 3 D ultrasound (US)-based motion correction technique using the HIFU transducer in pulse-echo mode. Validation of the method was performed in vitro and in vivo in the liver of pig under MR-thermometry. METHODS: 3 D-motion estimation was implemented using ultrasonic speckle-tracking between consecutive acquisitions. Displacement was estimated along four sub-apertures of the HIFU transducer by computing the normalised cross-correlation of backscattered signals followed by a triangulation algorithm. The HIFU beam was steered accordingly and energy was delivered under real-time MR-thermometry (using the proton resonance frequency shift method with online motion compensation and correction of associated susceptibility artefacts). An MR-navigator echo was used to assess the quality of the US-based motion correction. RESULTS: Displacement estimations from US measurements were in good agreement with 1 D MR-navigator echo readings. In vitro, the maximum temperature increase was improved by 37% as compared to experiments performed without motion correction and temperature distribution remained much more focussed. Similar results were reported in vivo, with an increase of 35% on the maximum temperature using this US-based HIFU target locking. CONCLUSION: This standalone 3D US-based motion correction technique is robust and allows maintaining the HIFU focal spot in the presence of motion without adding any burden or complexity to MR thermal imaging. In vitro and in vivo results showed about 35% improvement in heating efficiency when focus position was locked on the target using the proposed technique.


Assuntos
Fígado/diagnóstico por imagem , Fígado/cirurgia , Animais , Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Suínos , Ultrassonografia/métodos
12.
Phys Med Biol ; 62(10): 4083-4106, 2017 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-28426437

RESUMO

Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.


Assuntos
Acústica , Técnicas de Imagem por Elasticidade/métodos , Elasticidade , Humanos , Imagens de Fantasmas , Vibração
13.
Magn Reson Med ; 78(5): 1911-1921, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28090656

RESUMO

PURPOSE: The therapy endpoint most commonly used in MR-guided high intensity focused ultrasound is the thermal dose. Although namely correlated with nonviable tissue, it does not account for changes in mechanical properties of tissue during ablation. This study presents a new acquisition sequence for multislice, subsecond and simultaneous imaging of tissue temperature and displacement during ablation. METHODS: A single-shot echo planar imaging sequence was implemented using a pair of motion-encoding gradients, with alternated polarities. A first ultrasound pulse was synchronized on the second lobe of the motion-encoding gradients and followed by continuous sonication to induce a local temperature increase in ex vivo muscle and in vivo on pig liver. Lastly, the method was evaluated in the brain of two volunteers to assess method's precision. RESULTS: For thermal doses higher than the lethal threshold, displacement amplitude was reduced by 21% and 28% at the focal point in muscle and liver, respectively. Displacement value remained nearly constant for nonlethal thermal doses values. The mean standard deviation of temperature and displacement in the brain of volunteers remained below 0.8 °C and 2.5 µm. CONCLUSION: This new fast imaging sequence provides real-time measurement of temperature distribution and displacement at the focus during HIFU ablation. Magn Reson Med 78:1911-1921, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Cirurgia Assistida por Computador/métodos , Termografia/métodos , Animais , Temperatura Corporal , Encéfalo/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Suínos
14.
Proc Meet Acoust ; 32(1)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31217834

RESUMO

Acoustic holography method has been shown to provide accurate reconstruction of 3D ultrasound fields generated by various medical transducers including multi-element arrays as well as to set a boundary condition for nonlinear field modeling at high pressure levels. Here an approach of measuring holograms of individual array elements for modeling of an entire array field is proposed and tested for a 3 MHz 16-element annular array (48 mm diameter and 35 mm radius of curvature). The array is a part of a high intensity focused ultrasound system with magnetic resonance guidance used for developing thermal and mechanical methods of tissue ablation in mouse tumors. The holograms measured separately for each array element were combined together to obtain a boundary condition for the array with all operating elements. Modeling results were compared to low-amplitude beam scans and good agreement was demonstrated. Then, nonlinear field simulations were performed at increasing power outputs based on the 3D Westervelt equation. It was shown that the transducer is capable to produce focal waveforms with 140 MPa shock amplitude at 110 W acoustic power and thus is well suited for evaluating shock-based ablation therapies in small animals.

15.
Ultrasound Med Biol ; 42(9): 2261-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260243

RESUMO

Disturbances in the function of neuronal circuitry contribute to most neurologic disorders. As knowledge of the brain's connectome continues to improve, a more refined understanding of the role of specific circuits in pathologic states will also evolve. Tools capable of manipulating identified circuits in a targeted and restricted manner will be essential not only to expand our understanding of the functional roles of such circuits, but also to therapeutically disconnect critical pathways contributing to neurologic disease. This study took advantage of the ability of low-intensity focused ultrasound (FUS) to transiently disrupt the blood-brain barrier (BBB) to deliver a neurotoxin with poor BBB permeability (quinolinic acid [QA]) in a guided manner to a target region in the brain parenchyma. Ten male Sprague-Dawley rats were divided into two groups receiving the following treatments: (i) magnetic resonance-guided FUS + microbubbles + saline (n = 5), or (ii) magnetic resonance-guided FUS + microbubbles + QA (n = 5). Systemic administration of QA was well tolerated. However, when QA and microbubbles were systemically administered in conjunction with magnetic resonance-guided FUS, the BBB was disrupted and primary neurons were destroyed in the targeted subregion of the hippocampus in all QA-treated animals. Administration of vehicle (saline) together with microbubbles and FUS also disrupted the BBB but did not produce neuronal injury. These findings indicate the feasibility of non-invasively destroying a targeted region of the brain parenchyma using low-intensity FUS together with systemic administration of microbubbles and a neurotoxin. This approach could be of therapeutic value in various disorders in which disturbances of neural circuitry contribute to neurologic disease.


Assuntos
Barreira Hematoencefálica/metabolismo , Imagem por Ressonância Magnética Intervencionista , Neurotoxinas/administração & dosagem , Ácido Quinolínico/administração & dosagem , Ondas Ultrassônicas , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Masculino , Microbolhas , Modelos Animais , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem
16.
NMR Biomed ; 29(6): 721-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27061290

RESUMO

Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2 w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (<200 µm) containing many apoptotic cells was present between disintegrated and vital tumor tissue. A high level of agreement was found between T2 w imaging and H&E stained sections, making T2 w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2 w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia , Cirurgia Assistida por Computador/métodos , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
17.
J Ther Ultrasound ; 3: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26705473

RESUMO

BACKGROUND: Focused ultrasound combined with microbubble injection is capable of locally and transiently enhancing the permeability of the blood-brain barrier (BBB). Magnetic resonance imaging (MRI) guidance enables to plan, monitor, and characterize the BBB disruption. Being able to precisely and remotely control the permeabilization location is of great interest to perform reproducible drug delivery protocols. METHODS: In this study, we developed an MR-guided motorized focused ultrasound (FUS) system allowing the transducer displacement within preclinical MRI scanners, coupled with real-time transfer and reconstruction of MRI images, to help ultrasound guidance. Capabilities of this new device to deliver large molecules to the brain on either single locations or along arbitrary trajectories were characterized in vivo on healthy rats and mice using 1.5 MHz ultrasound sonications combined with microbubble injection. The efficacy of BBB permeabilization was assessed by injecting a gadolinium-based MR contrast agent that does not cross the intact BBB. RESULTS: The compact motorized FUS system developed in this work fits into the 9-cm inner diameter of the gradient insert installed on our 7-T preclinical MRI scanners. MR images acquired after contrast agent injection confirmed that this device can be used to enhance BBB permeability along remotely controlled spatial trajectories of the FUS beam in both rats and mice. The two-axis motor stage enables reaching any region of interest in the rodent brain. The positioning error when targeting the same anatomical location on different animals was estimated to be smaller than 0.5 mm. Finally, this device was demonstrated to be useful for testing BBB opening at various acoustic pressures (0.2, 0.4, 0.7, and 0.9 MPa) in the same animal and during one single ultrasound session. CONCLUSIONS: Our system offers the unique possibility to move the transducer within a high magnetic field preclinical MRI scanner, thus enabling the delivery of large molecules to virtually any rodent brain area in a non-invasive manner. It results in time-saving and reproducibility and could be used to either deliver drugs over large parts of the brain or test different acoustic conditions on the same animal during the same session, therefore reducing physiological variability.

18.
PLoS One ; 10(10): e0139667, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26439259

RESUMO

Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Feminino , Camundongos , Modelos Teóricos , Palpação
19.
J Ther Ultrasound ; 3: 14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26269744

RESUMO

BACKGROUND: Thermal and mechanical high intensity focused ultrasound (HIFU) ablation techniques are in development for non-invasive treatment of cancer. However, knowledge of in vivo histopathologic and immunologic reactions after HIFU ablation is still limited. This study aims to create a setup for evaluation of different HIFU ablation methods in mouse tumors using high-field magnetic resonance (MR) guidance. An optimized MR-guided-HIFU setup could be used to increase knowledge of the different pathologic and immunologic reactions to different HIFU ablation methods. METHODS: Three different HIFU treatment strategies were applied in mouse melanomas (B16): a thermal (continuous wave), a mechanical (5 ms pulsed wave), and an intermediate setting (20 ms pulsed wave) for HIFU ablation, all under MR guidance using a 7 tesla animal MR system. Histopathologic evaluation was performed 3 days after treatment. RESULTS: The focus of the ultrasound transducer could accurately be positioned within the tumor under MR image guidance, without substantial damage to the surrounding tissue and skin. All mice retained complete use of the treated leg after treatment. Temperatures of >60, <50, and <44 °C were reached during thermal, intermediate, and mechanical HIFU ablation, respectively. Thermal-treated tumors showed large regions of coagulative necrosis. Tumors of both the mechanical and intermediate groups showed fractionated tissue with islands of necrosis and some pseudocysts with hemorrhage. CONCLUSION: A stable small animal MR-guided HIFU setup was designed and evaluated for follow-up MR imaging and histopathologic responses of the treated tumors. This will facilitate further studies with a larger number of mice for detailed evaluation of the pathologic and immunologic response to different HIFU strategies.

20.
PLoS One ; 10(3): e0120037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785992

RESUMO

Under magnetic resonance (MR) guidance, high intensity focused ultrasound (HIFU) is capable of precise and accurate delivery of thermal dose to tissues. Given the excellent soft tissue imaging capabilities of MRI, but the lack of data on the correlation of MRI findings to histology following HIFU, we sought to examine tumor response to HIFU ablation to determine whether there was a correlation between histological findings and common MR imaging protocols in the assessment of the extent of thermal damage. Female FVB mice (n = 34), bearing bilateral neu deletion tumors, were unilaterally insonated under MR guidance, with the contralateral tumor as a control. Between one and five spots (focal size 0.5 × 0.5 × 2.5 mm3) were insonated per tumor with each spot receiving approximately 74.2 J of acoustic energy over a period of 7 seconds. Animals were then imaged on a 7T MR scanner with several protocols. T1 weighted images (with and without gadolinium contrast) were collected in addition to a series of T2 weighted and diffusion weighted images (for later reconstruction into T2 and apparent diffusion coefficient maps), immediately following ablation and at 6, 24, and 48 hours post treatment. Animals were sacrificed at each time point and both insonated/treated and contralateral tumors removed and stained for NADH-diaphorase, caspase 3, or with hematoxylin and eosin (H&E). We found the area of non-enhancement on contrast enhanced T1 weighted imaging immediately post ablation correlated with the region of tissue receiving a thermal dose CEM43 ≥ 240 min. Moreover, while both tumor T2 and apparent diffusion coefficient values changed from pre-ablation values, contrast enhanced T1 weighted images appeared to be more senstive to changes in tissue viability following HIFU ablation.


Assuntos
Adenocarcinoma/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Mamárias Experimentais/diagnóstico , Carga Tumoral/efeitos da radiação , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/metabolismo , Feminino , Gadolínio/química , Gadolínio/metabolismo , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Histocitoquímica , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/cirurgia , Camundongos , Som , Cirurgia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...