Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36440181

RESUMO

The eutectic Al-6Ni (wt.%) alloy exhibits excellent strength at ambient and elevated temperature, provided by a high volume fraction of Al3Ni microfibers formed during solidification. Here, Al-6Ni is micro-alloyed with Sc and Zr (with 0.1Sc+0.2Zr, 0.2Sc+0.4Zr and 0.3Sc+0.2Zr, wt.%), creating two additional populations of primary and secondary Al3(Sc,Zr) precipitates. The fully eutectic microstructure (α-Al + Al3Ni) observed in Al-6Ni alloy changes, with Sc and Zr addition to hypoeutectic microstructure with primary α-Al grains nucleated on solidification by primary Al3(Sc,Zr) precipitates. Upon subsequent aging, fully-coherent Al3(Sc,Zr) nano-precipitates form in the α-Al matrix between Al3Ni microfibers, providing substantial precipitation strengthening, which is maintained for up to 1 month at 350 °C. Alloy strength - both at ambient temperature and during creep at 300 °C - can be quantitatively described through a superposition of precipitation strengthening by Al3(Sc,Zr) nanoprecipitates and load-transfer strengthening by Al3Ni microfibers.

2.
Acta Biomater ; 8(7): 2747-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22465576

RESUMO

High-energy synchrotron X-ray diffraction is used to study in situ elastic strains in hydroxyapatite (HAP) for bovine femur cortical bone subjected to uniaxial compressive loading. Load-unload tests at room temperature (27°C) and body temperature (37°C) show that the load transfer to the stiff nanosized HAP platelets from the surrounding compliant protein matrix does not vary significantly (p<0.05) with temperature. This emphasizes that the stiffness of bone is controlled by the stiffness of the HAP phase, which remains unaffected by this change in temperature. Both the extent of hysteresis and the residual value of internal strains developed in HAP during load-unload cycling from 0 to -100 MPa increase significantly (p<0.05) with the number of loading cycles, indicative of strain energy dissipation and accumulation of permanent deformation. Monotonic loading tests, conducted at body temperature to determine the spatial variation of properties within the femur, illustrate that the HAP phase carries lower strain (and thus stresses) at the anterio-medial aspect of the femur than at the anterio-lateral aspect. This is correlated to higher HAP volume fractions in the former location (p<0.05). The Young's modulus of the bone is also found to correlate with the HAP volume fraction and porosity (p<0.05). Finally, samples with a primarily plexiform microstructure are found to be stiffer than those with a primarily Haversian microstructure (p<0.05).


Assuntos
Osso e Ossos/fisiologia , Durapatita/química , Nanoestruturas/química , Estresse Mecânico , Análise de Variância , Animais , Osso e Ossos/citologia , Bovinos , Módulo de Elasticidade , Reprodutibilidade dos Testes , Síncrotrons , Temperatura , Suporte de Carga/fisiologia , Difração de Raios X
3.
J Mech Behav Biomed Mater ; 5(1): 71-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100081

RESUMO

Various methods are used to investigate the variability in elastic properties across a population of deciduous bovine incisor root dentin samples spanning different animals, incisor types, and locations within teeth. First, measurements of elastic strains by high-energy synchrotron X-ray scattering during compressive loading of dentin specimens provided the effective modulus--the ratio of applied stress to elastic phase strain--for the two main phases of dentin (hydroxyapatite crystals and mineralized collagen fibrils), shedding light on load transfer operating at the nanoscale between collagen and mineral phases. Second, Young's moduli were measured at the macroscale by ultrasonic time-of-flight measurements. Third, thermogravimetry quantified the volume fractions of hydroxyapatite, protein and water at the macroscale. Finally, micro-Computed Tomography determined spatial variations of the mineral at the sub-millimeter scale. Statistical comparison of the above properties reveals: (i) no significant differences for dentin samples taken from different animals or different incisor types but (ii) significant differences for samples taken from the cervical or apical root sections as well as from different locations between buccal and lingual edges.


Assuntos
Dentina , Módulo de Elasticidade , Animais , Bovinos , Dentina/diagnóstico por imagem , Dentina/metabolismo , Incisivo/diagnóstico por imagem , Incisivo/metabolismo , Teste de Materiais , Minerais/metabolismo , Especificidade de Órgãos , Termogravimetria , Ultrassonografia , Difração de Raios X , Microtomografia por Raio-X
4.
Acta Biomater ; 8(1): 253-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21878399

RESUMO

While the matrix/reinforcement load-transfer occurring at the micro- and nanoscale in nonbiological composites subjected to creep deformation is well understood, this topic has been little studied in biological composites such as bone. Here, for the first time in bone, the mechanisms of time-dependent load transfer occurring at the nanoscale between the collagen phase and the hydroxyapatite (HAP) platelets are studied. Bovine cortical bone samples are subjected to synchrotron X-ray diffraction to measure in situ the evolution of elastic strains in the crystalline HAP phase and the evolution of viscoelastic strains accumulating in the mineralized collagen fibrils under creep conditions at body temperature. For a constant compressive stress, both types of strains increase linearly with time. This suggests that bone, as it deforms macroscopically, is behaving as a traditional composite, shedding load from the more compliant, viscoelastic collagen matrix to the reinforcing elastic HAP platelets. This behavior is modeled by finite-element simulation carried out at the fibrillar level.


Assuntos
Osso e Ossos/química , Colágeno/química , Durapatita/química , Estresse Mecânico , Animais , Bovinos , Força Compressiva , Elasticidade , Análise de Elementos Finitos , Teste de Materiais , Espalhamento a Baixo Ângulo , Viscosidade
5.
J Mech Behav Biomed Mater ; 4(8): 1774-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22098877

RESUMO

Bone X-ray irradiation occurs during medical treatments, sterilization of allografts, space travel and in vitro studies. High doses are known to affect the post-yield properties of bone, but their effect on the bone elastic properties is unclear. The effect of such doses on the mineral-organic interface has also not been adequately addressed. Here, the evolution of elastic properties and residual strains with increasing synchrotron X-ray dose (5-3880 kGy) is examined on bovine cortical bone. It is found that these doses affect neither the degree of nanometer-level load transfer between the hydroxyapatite (HAP) platelets and the collagen up to stresses of -60 MPa nor the microscopic modulus of collagen fibrils (both measured by synchrotron X-ray scattering during repeated in situ loading and unloading). However, the residual elastic strains in the HAP phase decrease markedly with increased irradiation, indicating damage at the HAP-collagen interface. The HAP residual strain also decreases after repeated loading/unloading cycles. These observations can be explained by temporary de-bonding at the HAP/collagen interface (thus reducing the residual strain), followed by rapid re-bonding (so that load transfer capability is not affected).


Assuntos
Elasticidade/efeitos da radiação , Fêmur/efeitos da radiação , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Bovinos , Relação Dose-Resposta à Radiação , Durapatita/química , Durapatita/metabolismo , Módulo de Elasticidade/efeitos da radiação , Fêmur/metabolismo , Raios X/efeitos adversos
6.
Acta Biomater ; 6(6): 2172-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19925891

RESUMO

The elastic properties of dentin, a biological composite consisting of stiff hydroxyapatite (HAP) nano-platelets within a compliant collagen matrix, are determined by the volume fraction of these two phases and the load transfer between them. We have measured the elastic strains in situ within the HAP phase of bovine dentine by high energy X-ray diffraction for a series of static compressive stresses at ambient temperature. The apparent HAP elastic modulus (ratio of applied stress to elastic HAP strain) was found to be 18+/-2GPa. This value is significantly lower than the value of 44GPa predicted by the lower bound load transfer Voigt model, using HAP and collagen volume fractions determined by thermo-gravimetric analysis. This discrepancy is explained by (i) a reduction in the intrinsic Young's modulus of the nano-size HAP platelets due to the high fraction of interfacial volume and (ii) an increase in local stresses due to stress concentration around the dentin tubules.


Assuntos
Dentina/química , Dente/química , Difração de Raios X/métodos , Animais , Bovinos , Módulo de Elasticidade , Dureza , Teste de Materiais , Estresse Mecânico , Síncrotrons
7.
Nat Mater ; 8(11): 863-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749769

RESUMO

The magnetic shape-memory alloy Ni-Mn-Ga shows, in monocrystalline form, a reversible magnetic-field-induced strain (MFIS) up to 10%. This strain, which is produced by twin boundaries moving solely by internal stresses generated by magnetic anisotropy energy, can be used in actuators, sensors and energy-harvesting devices. Compared with monocrystalline Ni-Mn-Ga, fine-grained Ni-Mn-Ga is much easier to process but shows near-zero MFIS because twin boundary motion is inhibited by constraints imposed by grain boundaries. Recently, we showed that partial removal of these constraints, by introducing pores with sizes similar to grains, resulted in MFIS values of 0.12% in polycrystalline Ni-Mn-Ga foams, close to those of the best commercial magnetostrictive materials. Here, we demonstrate that introducing pores smaller than the grain size further reduces constraints and markedly increases MFIS to 2.0-8.7%. These strains, which remain stable over >200,000 cycles, are much larger than those of any polycrystalline, active material.

8.
Acta Biomater ; 4(6): 1996-2007, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18678532

RESUMO

NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.


Assuntos
Substitutos Ósseos/química , Níquel/química , Titânio/química , Força Compressiva , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Permeabilidade , Porosidade , Pós , Pressão , Cloreto de Sódio/química , Estresse Mecânico , Propriedades de Superfície , Temperatura
9.
Acta Biomater ; 4(4): 773-82, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18348912

RESUMO

NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) in vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants.


Assuntos
Ligas/química , Substitutos Ósseos/química , Próteses e Implantes , Animais , Materiais Biocompatíveis/química , Porosidade , Propriedades de Superfície
10.
Phys Rev Lett ; 86(4): 668-71, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11177908

RESUMO

Transformation plasticity is a deformation mechanism which occurs during phase transformation of an externally stressed material. Pressure-induced transformation plasticity of ice could be relevant to the geology of the moons of the outer solar system, and has long been postulated to occur in olivine in the earth's interior. In the present work, ice specimens were subjected to isostatic pressure cycling between 0 and 300 MPa to induce reversible polymorphic transformation between ice I and II at 230 K. When a small uniaxial compressive stress was applied during cycling, the specimens exhibited a compressive strain (as large as 18.5% after a single cycle) proportional to the applied stress, in agreement with observations and theory for transformation plasticity of metals induced by polymorphic thermal cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...