Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Stem Cell Res Ther ; 15(1): 145, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764093

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS: In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS: Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION: In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.


Assuntos
Células-Tronco Hematopoéticas , Indenos , Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Indenos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Furanos/farmacologia , Sulfonas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Fumar Cigarros/efeitos adversos , Humanos , Inflamassomos/metabolismo
2.
Cell Mol Life Sci ; 81(1): 196, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658440

RESUMO

Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Telomerase , Telômero , Telomerase/metabolismo , Telomerase/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Telômero/metabolismo , Encurtamento do Telômero , Linhagem Celular
4.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564303

RESUMO

People with HIV (PWH) have a higher age-adjusted mortality due to chronic immune activation and age-related comorbidities. PWH also have higher rates of clonal hematopoiesis (CH) than age-matched non-HIV cohorts; however, risk factors influencing the development and expansion of CH in PWH remain incompletely explored. We investigated the relationship between CH, immune biomarkers, and HIV-associated risk factors (CD4+ and CD8+ T cells, nadir CD4+ count, opportunistic infections [OIs], and immune reconstitution inflammatory syndrome [IRIS]) in a diverse cohort of 197 PWH with median age of 42 years, using a 56-gene panel. Seventy-nine percent had a CD4+ nadir below 200 cells/µL, 58.9% had prior OIs, and 34.5% had a history of IRIS. The prevalence of CH was high (27.4%), even in younger individuals, and CD8+ T cells and nadir CD4+ counts strongly associated with CH after controlling for age. A history of IRIS was associated with CH in a subgroup analysis of patients 35 years of age and older. Inflammatory biomarkers were higher in CH carriers compared with noncarriers, supporting a dysregulated immune state. These findings suggest PWH with low nadir CD4+ and/or inflammatory complications may be at high risk of CH regardless of age and represent a high-risk group that could benefit from risk reduction and potentially targeted immunomodulation.


Assuntos
Hematopoiese Clonal , Infecções por HIV , Humanos , Adulto , Masculino , Feminino , Hematopoiese Clonal/genética , Infecções por HIV/imunologia , Infecções por HIV/complicações , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Síndrome Inflamatória da Reconstituição Imune/imunologia , Contagem de Linfócito CD4 , Fatores de Risco , Linfócitos T CD4-Positivos/imunologia , Biomarcadores , Adulto Jovem , Inflamação
5.
Br J Haematol ; 204(5): 2077-2085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462764

RESUMO

Diamond-Blackfan anaemia (DBA) is a rare, inherited bone marrow failure syndrome with a ribosomal defect causing slowed globin chain production with normal haem synthesis, causing an overabundance of reactive iron/haem and erythroid-specific cellular toxicity. Eltrombopag, a non-peptide thrombopoietin receptor agonist, is a potent intracellular iron chelator and induced a robust durable response in an RPS19-mutated DBA patient on another trial. We hypothesized eltrombopag would improve RBC production in DBA patients. We conducted a single-centre, single-arm pilot study (NCT04269889) assessing safety and erythroid response of 6 months of daily, fixed-dose eltrombopag for DBA patients. Fifteen transfusion-dependent (every 3-5 weeks) patients (median age 18 [range 2-56]) were treated. One responder had sustained haemoglobin improvement and >50% reduction in RBC transfusion frequency. Of note, 7/15 (41%) patients required dose reductions or sustained discontinuation of eltrombopag due to asymptomatic thrombocytosis. Despite the low response rate, eltrombopag has now improved erythropoiesis in several patients with DBA with a favourable safety profile. Dosing restrictions due to thrombocytosis may cause insufficient iron chelation to decrease haem production and improve anaemia in most patients. Future work will focus on erythropoiesis dynamics in patients and use of haem synthesis inhibitors without an impact on other haematopoietic lineages.


Assuntos
Anemia de Diamond-Blackfan , Benzoatos , Hidrazinas , Pirazóis , Humanos , Anemia de Diamond-Blackfan/tratamento farmacológico , Pirazóis/uso terapêutico , Hidrazinas/uso terapêutico , Hidrazinas/administração & dosagem , Hidrazinas/efeitos adversos , Benzoatos/uso terapêutico , Benzoatos/administração & dosagem , Benzoatos/efeitos adversos , Adulto , Masculino , Feminino , Criança , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Projetos Piloto , Resultado do Tratamento , Receptores de Trombopoetina/agonistas , Recidiva , Eritropoese/efeitos dos fármacos
6.
Cell Stem Cell ; 31(4): 455-466.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38508195

RESUMO

For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Macaca mulatta/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Lentivirus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células-Tronco Hematopoéticas , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética
7.
Blood Adv ; 8(3): 523-537, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048388

RESUMO

ABSTRACT: Macrophages orchestrate tissue immunity from the initiation and resolution of antimicrobial immune responses to the repair of damaged tissue. Murine studies demonstrate that tissue-resident macrophages are a heterogenous mixture of yolk sac-derived cells that populate the tissue before birth, and bone marrow-derived replacements recruited in adult tissues at steady-state and in increased numbers in response to tissue damage or infection. How this translates to species that are constantly under immunologic challenge, such as humans, is unknown. To understand the ontogeny and longevity of tissue-resident macrophages in nonhuman primates (NHPs), we use a model of autologous hematopoietic stem progenitor cell (HSPC) transplantation with HSPCs genetically modified to be marked with clonal barcodes, allowing for subsequent analysis of clonal ontogeny. We study the contribution of HSPCs to tissue macrophages, their clonotypic profiles relative to leukocyte subsets in the peripheral blood, and their transcriptomic and epigenetic landscapes. We find that HSPCs contribute to tissue-resident macrophage populations in all anatomic sites studied. Macrophage clonotypic profiles are dynamic and overlap significantly with the clonal hierarchy of contemporaneous peripheral blood monocytes. Epigenetic and transcriptomic landscapes of HSPC-derived macrophages are similar to tissue macrophages isolated from NHPs that did not undergo transplantation. We also use in vivo bromodeoxyuridine infusions to monitor tissue macrophage turnover in NHPs that did not undergo transplantation and find evidence for macrophage turnover at steady state. These data demonstrate that the life span of most tissue-resident macrophages is limited and can be replenished continuously from HSPCs.


Assuntos
Células-Tronco Hematopoéticas , Macaca , Humanos , Animais , Camundongos , Macrófagos , Monócitos , Medula Óssea
8.
Haematologica ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058170

RESUMO

Patients with severe aplastic anemia (SAA) are at high risk for morbidity and mortality due to severe infections. We aimed to characterize the role of granulocyte transfusion (GT) in SAA. Primary outcomes were survival from first GT, including overall survival (OS) at last follow up, survival to discharge, and receipt of HSCT. Secondary outcomes included evaluation of clinical response at 7 and 30 days after GT initiation based on a clinical scoring system incorporating microbiological and radiographic response. Twenty-eight SAA patients underwent 30 GT courses with a per-dose median of 1.28 x 109 granulocyte cells/kilogram (range 0.45-4.52 x 109). OS from initial GT to median last follow up (551 days) was 50%, with 39% (11/28) alive at last follow up. Sixty-four percent (18/28) of all patients survived to hospital discharge. Patients with complete, partial, or stable response at 30 days had significantly improved OS compared to non-responders (p=0.0004). Eighty-six percent (18/21) of patients awaiting HSCT during GT underwent transplant and 62% (13/21) survived to post-HSCT discharge. Sex, type of infection, or percentage of days with absolute neutrophil count > 0.2x109/L during GT course were not predictive of survival (p=0.52, p=0.7, p=0.28). Nine of 28 (32%) patients developed new or increased human leukocyte antigen (HLA) alloimmunization during their GT course. GTs in SAA may impact survival in those with improvement or stabilization of their underlying infection. Alloimmunization can occur and OS in this population remains poor, but GTs may be a useful tool to bridge patients to curative treatment with HSCT.

9.
Nat Commun ; 14(1): 6291, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828021

RESUMO

Hematopoietic stem cell (HSC) gene therapy has curative potential; however, its use is limited by the morbidity and mortality associated with current chemotherapy-based conditioning. Targeted conditioning using antibody-drug conjugates (ADC) holds promise for reduced toxicity in HSC gene therapy. Here we test the ability of an antibody-drug conjugate targeting CD117 (CD117-ADC) to enable engraftment in a non-human primate lentiviral gene therapy model of hemoglobinopathies. Following single-dose CD117-ADC, a >99% depletion of bone marrow CD34 + CD90 + CD45RA- cells without lymphocyte reduction is observed, which results are not inferior to multi-day myeloablative busulfan conditioning. CD117-ADC, similarly to busulfan, allows efficient engraftment, gene marking, and vector-derived fetal hemoglobin induction. Importantly, ADC treatment is associated with minimal toxicity, and CD117-ADC-conditioned animals maintain fertility. In contrast, busulfan treatment commonly causes severe toxicities and infertility in humans. Thus, the myeloablative capacity of single-dose CD117-ADC is sufficient for efficient engraftment of gene-modified HSCs while preserving fertility and reducing adverse effects related to toxicity in non-human primates. This targeted conditioning approach thus provides the proof-of-principle to improve risk-benefit ratio in a variety of HSC-based gene therapy products in humans.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoconjugados , Animais , Bussulfano/farmacologia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Imunoconjugados/farmacologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Proteínas Proto-Oncogênicas c-kit/uso terapêutico , Macaca mulatta/imunologia
10.
Front Vet Sci ; 10: 1182197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483285

RESUMO

Clinical manifestations of COVID-19 vary widely, ranging from asymptomatic to severe respiratory failure with profound inflammation. Although risk factors for severe illness have been identified, definitive determinants remain elusive. Clonal hematopoiesis (CH), the expansion of hematopoietic stem and progenitor cells bearing acquired somatic mutations, is associated with advanced age and hyperinflammation. Given the similar age range and hyperinflammatory phenotype between frequent CH and severe COVID-19, CH could impact the risk of severe COVID-19. Human cohort studies have attempted to prove this relationship, but conclusions are conflicting. Rhesus macaques (RMs) are being utilized to test vaccines and therapeutics for COVID-19. However, RMs, even other species, have not yet been reported to develop late inflammatory COVID-19 disease. Here, RMs with either spontaneous DNMT3A or engineered TET2 CH along with similarly transplanted and conditioned controls were infected with SARS-CoV-2 and monitored until 12 days post-inoculation (dpi). Although no significant differences in clinical symptoms and blood counts were noted, an aged animal with natural DNMT3A CH died on 10 dpi. CH macaques showed evidence of sustained local inflammatory responses compared to controls. Interestingly, viral loads in respiratory tracts were higher at every timepoint in the CH group. Lung sections from euthanasia showed evidence of mild inflammation in all animals, while viral antigen was more frequently detected in the lung tissues of CH macaques even at the time of autopsy. Despite the lack of striking inflammation and serious illness, our findings suggest potential pathophysiological differences in RMs with or without CH upon SARS-CoV-2 infection.

11.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36789423

RESUMO

Clinical manifestations of COVID-19 vary widely, ranging from asymptomatic to severe respiratory failure with profound inflammation. Although risk factors for severe illness have been identified, definitive determinants remain elusive. Clonal hematopoiesis (CH), the expansion of hematopoietic stem and progenitor cells bearing acquired somatic mutations, is associated with advanced age and hyperinflammation. Given the similar age range and hyperinflammatory phenotype between frequent CH and severe COVID-19, CH could impact the risk of severe COVID-19. Human cohort studies have attempted to prove this relationship, but conclusions are conflicting. Rhesus macaques (RMs) are being utilized to test vaccines and therapeutics for COVID-19. However, RMs, even other species, have not yet been reported to develop late inflammatory COVID-19 disease. Here, RMs with either spontaneous DNMT3A or engineered TET2 CH along with similarly transplanted and conditioned controls were infected with SARS-CoV-2 and monitored until 12 days post-inoculation (dpi). Although no significant differences in clinical symptoms and blood counts were noted, an aged animal with natural DNMT3A CH died on 10 dpi. CH macaques showed evidence of sustained local inflammatory responses compared to controls. Interestingly, viral loads in respiratory tracts were higher at every timepoint in the CH group. Lung sections from euthanasia showed evidence of mild inflammation in all animals, while viral antigen was more frequently detected in the lung tissues of CH macaques even at the time of autopsy. Despite the lack of striking inflammation and serious illness, our findings suggest potential pathophysiological differences in RMs with or without CH upon SARS-CoV-2 infection. Highlights: No evidence of association between CH and COVID-19 clinical severity in macaques.The presence of CH is associated with prolonged local inflammatory responses in COVID-19.SARS-CoV-2 persists longer in respiratory tracts of macaques with CH following infection.

12.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36735910

RESUMO

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Assuntos
Proteômica , Espermidina , Humanos , Espermidina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Diferenciação Celular , Fator de Iniciação de Tradução Eucariótico 5A
13.
Mol Ther Methods Clin Dev ; 28: 62-75, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36620072

RESUMO

The clonal dynamics following hematopoietic stem progenitor cell (HSPC) transplantation with busulfan conditioning are of great interest to the development of HSPC gene therapies. Compared with total body irradiation (TBI), busulfan is less toxic and more clinically relevant. We used a genetic barcoded HSPC autologous transplantation model to investigate the impact of busulfan conditioning on hematopoietic reconstitution in rhesus macaques. Two animals received lower busulfan dose and demonstrated lower vector marking levels compared with the third animal given a higher busulfan dose, despite similar busulfan pharmacokinetic analysis. We observed uni-lineage clonal engraftment at 1 month post-transplant, replaced by multilineage clones by 2 to 3 months in all animals. The initial multilineage clones in the first two animals were replaced by a second multilineage wave at 9 months; this clonal pattern disappeared at 13 months in the first animal, though was maintained in the second animal. The third animal maintained stable multilineage clones from 3 months to the most recent time point. In addition, busulfan animals exhibit more rapid HSPC clonal mixing across bone marrow sites and less CD16+ NK-biased clonal expansion compared with TBI animals. Therefore, busulfan conditioning regimens can variably impact the marrow niche, resulting in differences in clonal patterns with implications for HSPC gene therapies.

14.
Mol Ther Oncolytics ; 28: 74-87, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36699615

RESUMO

Multiple clinical trials exploring the potential of adoptive natural killer (NK) cell therapy for cancer have employed ex vivo expansion using feeder cells to obtain large numbers of NK cells. We have previously utilized the rhesus macaque model to clonally track the NK cell progeny of barcode-transduced CD34+ stem and progenitor cells after transplant. In this study, NK cells from barcoded rhesus macaques were used to study the changes in NK cell clonal patterns that occurred during ex vivo expansion using culture protocols similar to those employed in clinical preparation of human NK cells including irradiated lymphoblastoid cell line (LCL) feeder cells or K562 cells expressing 4-1BBL and membrane-bound interleukin-21 (IL-21). NK expansion cultures resulted in the proliferation of clonally diverse NK cells, which, at day 14 harvest, contained greater than 50% of the starting barcode repertoire. Diversity as measured by Shannon index was maintained after culture. With both LCL and K562 feeders, proliferation of long-lived putative memory-like NK cell clones was observed, with these clones continuing to constitute a mean of 31% of the total repertoire of expanded cells. These experiments provide insight into the clonal makeup of expanded NK cell clinical products.

15.
Blood ; 141(17): 2100-2113, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36542832

RESUMO

The choice to postpone treatment while awaiting genetic testing can result in significant delay in definitive therapies in patients with severe pancytopenia. Conversely, the misdiagnosis of inherited bone marrow failure (BMF) can expose patients to ineffectual and expensive therapies, toxic transplant conditioning regimens, and inappropriate use of an affected family member as a stem cell donor. To predict the likelihood of patients having acquired or inherited BMF, we developed a 2-step data-driven machine-learning model using 25 clinical and laboratory variables typically recorded at the initial clinical encounter. For model development, patients were labeled as having acquired or inherited BMF depending on their genomic data. Data sets were unbiasedly clustered, and an ensemble model was trained with cases from the largest cluster of a training cohort (n = 359) and validated with an independent cohort (n = 127). Cluster A, the largest group, was mostly immune or inherited aplastic anemia, whereas cluster B comprised underrepresented BMF phenotypes and was not included in the next step of data modeling because of a small sample size. The ensemble cluster A-specific model was accurate (89%) to predict BMF etiology, correctly predicting inherited and likely immune BMF in 79% and 92% of cases, respectively. Our model represents a practical guide for BMF diagnosis and highlights the importance of clinical and laboratory variables in the initial evaluation, particularly telomere length. Our tool can be potentially used by general hematologists and health care providers not specialized in BMF, and in under-resourced centers, to prioritize patients for genetic testing or for expeditious treatment.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Humanos , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/terapia , Diagnóstico Diferencial , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Transtornos da Insuficiência da Medula Óssea/diagnóstico , Pancitopenia/diagnóstico
16.
Blood ; 141(3): 231-237, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36322931

RESUMO

Germ line loss-of-function heterozygous mutations in the RUNX1 gene cause familial platelet disorder with associated myeloid malignancies (FPDMM) characterized by thrombocytopenia and a life-long risk of hematological malignancies. Although gene therapies are being considered as promising therapeutic options, current preclinical models do not recapitulate the human phenotype and are unable to elucidate the relative fitness of mutation-corrected and RUNX1-heterozygous mutant hematopoietic stem and progenitor cells (HSPCs) in vivo long term. We generated a rhesus macaque with an FPDMM competitive repopulation model using CRISPR/Cas9 nonhomologous end joining editing in the RUNX1 gene and the AAVS1 safe-harbor control locus. We transplanted mixed populations of edited autologous HSPCs and tracked mutated allele frequencies in blood cells. In both animals, RUNX1-edited cells expanded over time compared with AAVS1-edited cells. Platelet counts remained below the normal range in the long term. Bone marrows developed megakaryocytic dysplasia similar to human FPDMM, and CD34+ HSPCs showed impaired in vitro megakaryocytic differentiation, with a striking defect in polyploidization. In conclusion, the lack of a competitive advantage for wildtype or control-edited HSPCs over RUNX1 heterozygous-mutated HSPCs long term in our preclinical model suggests that gene correction approaches for FPDMM will be challenging, particularly to reverse myelodysplastic syndrome/ acute myeloid leukemia predisposition and thrombopoietic defects.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Animais , Humanos , Macaca mulatta , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Trombopoese , Fenótipo
17.
Methods Mol Biol ; 2567: 63-84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255695

RESUMO

The nonhuman primate (NHP) animal model is an important predictive preclinical model for developing gene and cell therapies. It is also an experimental animal model used to study hematopoietic stem and progenitor cell (HSPC) biology, with the capability of serving as a step for the translation of the basic research concepts from small animals to humans. Lentiviral vectors are currently the standard gene delivery vehicles for transduction of HSPCs in the clinical setting. They have proven to be less genotoxic and more efficient than the previously used murine γ-retroviruses. Transplantation of lentiviral vector-transduced HSPCs into autologous macaques has been well developed over the past two decades. In this chapter, we provide detailed methodologies for lentiviral vector transduction of rhesus macaque HSPCs, including production and titration of lentiviral vector, purification of CD34+ HSPCs, and lentiviral vector transduction and assessment.


Assuntos
Vetores Genéticos , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Antígenos CD34/genética , Vetores Genéticos/genética , Lentivirus/genética , Macaca mulatta , Transdução Genética
18.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168153

RESUMO

For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) requires both sufficient HDR efficiency and protection of LT-HSC function and number. The impact of HDR on true LT-HSCs clonal dynamics in a relevant large animal model has not previously been studied. To track the HDR-edited cells, autologous rhesus macaque (RM) CD34 + cells were electroporated with the gRNA/Cas9 ribonucleoprotein (RNP) and HDR cassette barcode library structure and reinfused into RMs following myeloablation. For competitive model animals, fractionated CD34 + cells were transduced with a barcoded GFP-expressing lentiviral vector (LV) and electroporated via HDR machinery, respectively. CD33 knockout (KO) neutrophils were prevalent early following engraftment and then rapidly decreased, resulting in less than 1% total editing efficiency. Interestingly, in competitive animals, a higher concentration of i53 mRNA result in a less steep reduction in CD33 KO cells, presented a modest decrease in HDR rate (0.1-0.2%) and total indels (1.5-6.5%). In contrast, the drop off of LV-transduced GFP + cells stabilized at 20% after 2 months. We next retrieved embedded barcodes and revealed that various clones contributed to early hematopoietic reconstitution, then after dominant clones appeared at steady state throughout the animals. In conclusion, CRISPR/HDR edited cells disappeared rapidly after the autologous transplantation in RM despite substantial gene editing outcome, whereas LV-transduced cells were relatively well maintained. Clonality of HDR-edited cells drastically shrank at early stage and then relied on several dominant clones, which can be mildly mitigated by the introduction of i53 mRNA.

19.
Mol Ther Methods Clin Dev ; 27: 17-31, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36156878

RESUMO

Chimeric antigen receptor (CAR)-T cells have emerged as a promising treatment modality for various hematologic and solid malignancies over the past decade. Animal models remain the cornerstone of pre-clinical evaluation of human CAR-T cell products and are generally required by regulatory agencies prior to clinical translation. However, pharmacokinetics and pharmacodynamics of adoptively transferred T cells are dependent on various recipient factors, posing challenges for accurately predicting human engineered T cell behavior in non-human animal models. For example, murine xenograft models did not forecast now well-established cytokine-driven systemic toxicities of CAR-T cells seen in humans, highlighting the limitations of animal models that do not perfectly recapitulate complex human immune systems. Understanding the concordance as well as discrepancies between existing pre-clinical animal data and human clinical experiences, along with established advantages and limitations of each model, will facilitate investigators' ability to appropriately select and design animal models for optimal evaluation of future CAR-T cell products. We summarize the current state of animal models in this field, and the advantages and disadvantages of each approach depending on the pre-clinical questions being asked.

20.
Leukemia ; 36(9): 2328-2337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896822

RESUMO

Predictors, genetic characteristics, and long-term outcomes of patients with SAA who clonally evolved after immunosuppressive therapy (IST) were assessed. SAA patients were treated with IST from 1989-2020. Clonal evolution was categorized as "high-risk" (overt myeloid neoplasm [meeting WHO criteria for dysplasia, MPN or acute leukemia] or isolated chromosome-7 abnormality/complex karyotype without dysplasia or overt myeloid neoplasia) or "low-risk" (non-7 or non-complex chromosome abnormalities without morphological evidence of dysplasia or myeloid neoplasia). Univariate and multivariate analysis using Fine-Gray competing risk regression model determined predictors. Long-term outcomes included relapse, overall survival (OS) and hematopoietic stem cell transplant (HSCT). Somatic mutations in myeloid cancer genes were assessed in evolvers and in 407 patients 6 months after IST. Of 663 SAA patients, 95 developed clonal evolution. Pre-treatment age >48 years and ANC > 0.87 × 109/L were strong predictors of high-risk evolution. OS was 37% in high-risk clonal evolution by 5 years compared to 94% in low-risk. High-risk patients who underwent HSCT had improved OS. Eltrombopag did not increase high-risk evolution. Splicing factors and RUNX1 somatic variants were detected exclusively at high-risk evolution; DNMT3A, BCOR/L1 and ASXL1 were present in both. RUNX1, splicing factors and ASXL1 somatic mutations detected at 6 months after IST predicted high-risk evolution.


Assuntos
Anemia Aplástica , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Evolução Clonal , Subunidade alfa 2 de Fator de Ligação ao Core , Humanos , Terapia de Imunossupressão , Imunossupressores , Pessoa de Meia-Idade , Fatores de Processamento de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...