Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
JMIR Res Protoc ; 13: e50568, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536234

RESUMO

BACKGROUND: Diabetic eye screening (DES) represents a significant opportunity for the application of machine learning (ML) technologies, which may improve clinical and service outcomes. However, successful integration of ML into DES requires careful product development, evaluation, and implementation. Target product profiles (TPPs) summarize the requirements necessary for successful implementation so these can guide product development and evaluation. OBJECTIVE: This study aims to produce a TPP for an ML-automated retinal imaging analysis software (ML-ARIAS) system for use in DES in England. METHODS: This work will consist of 3 phases. Phase 1 will establish the characteristics to be addressed in the TPP. A list of candidate characteristics will be generated from the following sources: an overview of systematic reviews of diagnostic test TPPs; a systematic review of digital health TPPs; and the National Institute for Health and Care Excellence's Evidence Standards Framework for Digital Health Technologies. The list of characteristics will be refined and validated by a study advisory group (SAG) made up of representatives from key stakeholders in DES. This includes people with diabetes; health care professionals; health care managers and leaders; and regulators and policy makers. In phase 2, specifications for these characteristics will be drafted following a series of semistructured interviews with participants from these stakeholder groups. Data collected from these interviews will be analyzed using the shortlist of characteristics as a framework, after which specifications will be drafted to create a draft TPP. Following approval by the SAG, in phase 3, the draft will enter an internet-based Delphi consensus study with participants sought from the groups previously identified, as well as ML-ARIAS developers, to ensure feasibility. Participants will be invited to score characteristic and specification pairs on a scale from "definitely exclude" to "definitely include," and suggest edits. The document will be iterated between rounds based on participants' feedback. Feedback on the draft document will be sought from a group of ML-ARIAS developers before its final contents are agreed upon in an in-person consensus meeting. At this meeting, representatives from the stakeholder groups previously identified (minus ML-ARIAS developers, to avoid bias) will be presented with the Delphi results and feedback of the user group and asked to agree on the final contents by vote. RESULTS: Phase 1 was completed in November 2023. Phase 2 is underway and expected to finish in March 2024. Phase 3 is expected to be complete in July 2024. CONCLUSIONS: The multistakeholder development of a TPP for an ML-ARIAS for use in DES in England will help developers produce tools that serve the needs of patients, health care providers, and their staff. The TPP development process will also provide methods and a template to produce similar documents in other disease areas. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50568.

2.
Mycologia ; 115(6): 749-767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37874894

RESUMO

Diverse fungi colonize plant roots worldwide and include species from many orders of the phylum Ascomycota. These fungi include taxa with dark septate hyphae that colonize grass roots and may modulate plant responses to stress. We describe a novel group of fungal isolates and evaluate their effects on the grass Bouteloua gracilis in vitro. We isolated fungi from roots of six native grasses from 24 sites spanning replicated latitudinal gradients in the south-central US grasslands and characterized isolates phylogenetically using a genome analysis. We analyzed 14 isolates representing a novel clade within the family Montagnulaceae (order Pleosporales), here typified as Pleoardoris graminearum, closely related to the genera Didymocrea and Bimuria. This novel species produces asexual, light brown pycnidium-like conidioma, hyaline hyphae, and chlamydospores when cultured on quinoa and kiwicha agar. To evaluate its effects on B. gracilis, seeds were inoculated with one of three isolates (DS304, DS334, and DS1613) and incubated at 25 C for 20 d. We also tested the effect of volatile organic compounds (VOCs) produced by the same isolates on B. gracilis root and stem lengths. Isolates had variable effects on plant growth. One isolate increased B. gracilis root length up to 34% compared with uninoculated controls. VOCs produced by two isolates increased root and stem lengths (P < 0.05) compared with controls. Internal transcribed spacer ITS2 metabarcode data revealed that P. graminearum is distributed across a wide range of sites in North America (22 of 24 sites sampled), and its relative abundance is influenced by host species identity and latitude. Host species identity and site were the most important factors determining P. graminearum relative abundance in drought experiments at the Extreme Drought in the Grasslands Experiment (EDGE) sites. Variable responses of B. gracilis to inoculation highlight the potential importance of nonmycorrhizal root-associated fungi on plant survival in arid ecosystems.


Assuntos
Ascomicetos , Ecossistema , Raízes de Plantas/microbiologia , Hifas , Plantas
3.
Biotechnol Rep (Amst) ; 39: e00810, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37559690

RESUMO

Snake venoms possess a range of pharmacological and toxicological activities. Here we evaluated the antibacterial and anti-biofilm activity against methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA) of venoms from the Samar spitting cobra Naja samarensis and the Puff adder Bitis arietans. Both venoms prevented biofilm production by pathogenic S. aureus in a growth-independent manner, with the B. arietans venom being most potent. Fractionation showed the active molecule to be heat-labile and >10 kDa in size. Proteomic profiles of N. samarensis venom revealed neurotoxins and cytotoxins, as well as an abundance of serine proteases and three-finger toxins, while serine proteases, metalloproteinases and C-lectin types were abundant in B. arietans venom. These enzymes may have evolved to prevent bacteria colonising the snake venom gland. From a biomedical biotechnology perspective, they have valuable potential for anti-virulence therapy to fight antibiotic resistant microbes.

4.
mSystems ; 8(3): e0122022, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37133282

RESUMO

Biotic factors that influence the temporal stability of microbial community functioning are an emerging research focus for the control of natural and engineered systems. The discovery of common features within community ensembles that differ in functional stability over time is a starting point to explore biotic factors. We serially propagated a suite of soil microbial communities through five generations of 28-day microcosm incubations to examine microbial community compositional and functional stability during plant litter decomposition. Using dissolved organic carbon (DOC) abundance as a target function, we hypothesized that microbial diversity, compositional stability, and associated changes in interactions would explain the relative stability of the ecosystem function between generations. Communities with initially high DOC abundance tended to converge towards a "low DOC" phenotype within two generations, but across all microcosms, functional stability between generations was highly variable. By splitting communities into two cohorts based on their relative DOC functional stability, we found that compositional shifts, diversity, and interaction network complexity were associated with the stability of DOC abundance between generations. Further, our results showed that legacy effects were important in determining compositional and functional outcomes, and we identified taxa associated with high DOC abundance. In the context of litter decomposition, achieving functionally stable communities is required to utilize soil microbiomes to increase DOC abundance and long-term terrestrial DOC sequestration as one solution to reduce atmospheric carbon dioxide concentrations. Identifying factors that stabilize function for a community of interest may improve the success of microbiome engineering applications. IMPORTANCE Microbial community functioning can be highly dynamic over time. Identifying and understanding biotic factors that control functional stability is of significant interest for natural and engineered communities alike. Using plant litter-decomposing communities as a model system, this study examined the stability of ecosystem function over time following repeated community transfers. By identifying microbial community features that are associated with stable ecosystem functions, microbial communities can be manipulated in ways that promote the consistency and reliability of the desired function, improving outcomes and increasing the utility of microorganisms.


Assuntos
Microbiota , Microbiologia do Solo , Reprodutibilidade dos Testes , Microbiota/genética , Plantas , Solo
5.
Microbiol Spectr ; : e0147622, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943043

RESUMO

The increasing occurrence of drought is a global challenge that threatens food security through direct impacts to both plants and their interacting soil microorganisms. Plant growth promoting microbes are increasingly being harnessed to improve plant performance under stress. However, the magnitude of microbiome impacts on both structural and physiological plant traits under water limited and water replete conditions are not well-characterized. Using two microbiomes sourced from a ponderosa pine forest and an agricultural field, we performed a greenhouse experiment that used a crossed design to test the individual and combined effects of the water availability and the soil microbiome composition on plant performance. Specifically, we studied the structural and leaf functional traits of maize that are relevant to drought tolerance. We further examined how microbial relationships with plant phenotypes varied under different combinations of microbial composition and water availability. We found that water availability and microbial composition affected plant structural traits. Surprisingly, they did not alter leaf function. Maize grown in the forest-soil microbiome produced larger plants under well-watered and water-limited conditions, compared to an agricultural soil community. Although leaf functional traits were not significantly different between the watering and microbiome treatments, the bacterial composition and abundance explained significant variability in both plant structure and leaf function within individual treatments, especially water-limited plants. Our results suggest that bacteria-plant interactions that promote plant performance under stress depend upon the greater community composition and the abiotic environment. IMPORTANCE Globally, drought is an increasingly common and severe stress that causes significant damage to agricultural and wild plants, thereby threatening food security. Despite growing evidence of the potential benefits of soil microorganisms on plant performance under stress, decoupling the effects of the microbiome composition versus the water availability on plant growth and performance remains a challenge. We used a highly controlled and replicated greenhouse experiment to understand the impacts of microbial community composition and water limitation on corn growth and drought-relevant functions. We found that both factors affected corn growth, and, interestingly, that individual microbial relationships with corn growth and leaf function were unique to specific watering/microbiome treatment combinations. This finding may help explain the inconsistent success of previously identified microbial inocula in improving plant performance in the face of drought, outside controlled environments.

6.
mSystems ; : e0122022, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38990008

RESUMO

IMPORTANCE: Microbial community functioning can be highly dynamic over time. Identifying and understanding biotic factors that control functional stability is of significant interest for natural and engineered communities alike. Using plant litter decomposing communities as a model system, this study examined the stability of ecosystem function over time following repeated community transfers. By identifying microbial community features that are associated with stable ecosystem functions, microbial communities can be manipulated in ways that promote the consistency and reliability of the desired function, improving outcomes and increasing the utility of microorganisms.

7.
Toxins (Basel) ; 14(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36136525

RESUMO

Venom compositions include complex mixtures of toxic proteins that evolved to immobilize/dissuade organisms by disrupting biological functions. Venom production is metabolically expensive, and parsimonious use is expected, as suggested by the venom optimisation hypothesis. The decision-making capacity to regulate venom usage has never been demonstrated for the globally invasive Noble false widow Steatoda nobilis (Thorell, 1875) (Theridiidae). Here, we investigated variations of venom quantities available in a wild population of S. nobilis and prey choice depending on venom availability. To partially determine their competitiveness, we compared their attack rate success, median effective dose (ED50) and lethal dose (LD50), with four sympatric synanthropic species: the lace webbed spider Amaurobius similis, the giant house spider Eratigena atrica, the missing sector orb-weaver Zygiella x-notata, and the cellar spider Pholcus phalangioides. We show that S. nobilis regulates its venom usage based on availability, and its venom is up to 230-fold (0.56 mg/kg) more potent than native spiders. The high potency of S. nobilis venom and its ability to optimize its usage make this species highly competitive against native European spiders sharing the same habitats.


Assuntos
Venenos de Aranha , Aranhas , Animais , Ecossistema
8.
Sci Rep ; 12(1): 12581, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869127

RESUMO

Plant survival during environmental stress greatly affects ecosystem carbon (C) cycling, and plant-microbe interactions are central to plant stress survival. The release of C-rich root exudates is a key mechanism plants use to manage their microbiome, attracting beneficial microbes and/or suppressing harmful microbes to help plants withstand environmental stress. However, a critical knowledge gap is how plants alter root exudate concentration and composition under varying stress levels. In a greenhouse study, we imposed three drought treatments (control, mild, severe) on blue grama (Bouteloua gracilis Kunth Lag. Ex Griffiths), and measured plant physiology and root exudate concentration and composition using GC-MS, NMR, and FTICR. With increasing drought severity, root exudate total C and organic C increased concurrently with declining predawn leaf water potential and photosynthesis. Root exudate composition mirrored the physiological gradient of drought severity treatments. Specific compounds that are known to alter plant drought responses and the rhizosphere microbiome mirrored the drought severity-induced root exudate compositional gradient. Despite reducing C uptake, these plants actively invested C to root exudates with increasing drought severity. Patterns of plant physiology and root exudate concentration and composition co-varied along a gradient of drought severity.


Assuntos
Secas , Microbiota , Exsudatos e Transudatos , Raízes de Plantas/fisiologia , Plantas , Poaceae , Rizosfera
9.
Mycologia ; 114(2): 254-269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35394886

RESUMO

Darksidea is a common genus of dark septate fungi-a group of ascomycetes in semiarid regions. A survey reported D. alpha and a distinct Darksidea lineage as abundant root-associated fungi of foundational grasses in North America. Fungi were isolated, and metabarcode data were obtained from sequencing of fungal communities of grass roots in the United States. During a comprehensive investigation of the Darksidea lineage, we carried out polyphasic taxonomy, genomic characterization, and identification of host associations, geographic distribution, and environmental factors that correlate with its abundance. For molecular phylogenetic studies, seven loci were sequenced. Isolates of the distinct Darksidea had variable colony morphology. No sexual reproductive structures were detected, but chlamydospores were frequently observed. The complete genome of an isolate of the lineage was sequenced with a size of 52.3 Mb including 14 707 gene models. Based on morphology and phylogenetic analysis, we propose the novel species Darksidea phi, sp. nov. Metabarcoding data showed that D. phi distribution and relative abundance were not limited to semiarid regions or a specific grass species, suggesting low host specificity among graminoids. This new species, D. phi, expands the distribution of the genus in the United States beyond prior reports from arid regions.


Assuntos
Ascomicetos , Raízes de Plantas , Clima Desértico , Endófitos , Filogenia , Raízes de Plantas/microbiologia , Poaceae
10.
Clin Toxicol (Phila) ; 60(1): 59-70, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34039122

RESUMO

CONTEXT: In recent years, the Noble false widow spider Steatoda nobilis (Thorell, 1875) has expanded its range globally and may represent a potential threat to native ecosystems and public health. Increasing numbers in synanthropic habitats have led to more human encounters and envenomations. Steatoda nobilis bites were previously classed as medically significant with similarities to bites from true black widows of the genus Latrodectus but deemed milder in onset, with symptoms generally ranging from mild to moderate. CASE DETAILS: In this manuscript we present 16 new cases of S. nobilis envenomations bringing the total number of confirmed cases reported in the literature to 24. We report new symptoms and provide discussion on the contributing factors to pathology following bites by S. nobilis. DISCUSSION: We report a range of pathologies including necrosis, Latrodectus-like envenomation symptoms that include debilitating pain, tremors, fatigue, nausea, hypotension, and vectored bacterial infections including cellulitis and dermatitis. Symptoms ranged from mild to severe, requiring hospitalisation in some cases.


Assuntos
Infecções Bacterianas , Viúva Negra , Picada de Aranha , Venenos de Aranha , Aranhas , Animais , Ecossistema , Humanos , Picada de Aranha/diagnóstico , Picada de Aranha/patologia , Venenos de Aranha/toxicidade
11.
ISME Commun ; 2(1): 24, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37938672

RESUMO

To date, the potential impact of viral communities on biogeochemical cycles in soil has largely been inferred from correlational evidence, such as virus-driven changes in microbial abundances, viral auxiliary metabolic genes, and links with soil physiochemical properties. To more directly test the impact of soil viruses on carbon cycling during plant litter decomposition, we added concentrated viral community suspensions to complex litter decomposer communities in 40-day microcosm experiments. Microbial communities from two New Mexico alpine soils, Pajarito (PJ) and Santa Fe (SF), were inoculated onto grass litter on sand, and three treatments were applied in triplicate to each set of microcosms: addition of buffer (no added virus), live virus (+virus), or killed-virus (+killed-virus) fractions extracted from the same soil. Significant differences in respiration were observed between the +virus and +killed-virus treatments in the PJ, but not the SF microcosms. Bacterial and fungal community composition differed significantly by treatment in both PJ and SF microcosms. Combining data across both soils, viral addition altered links between bacterial and fungal diversity, dissolved organic carbon and total nitrogen. Overall, we demonstrate that increasing viral pressure in complex microbial communities can impact terrestrial biogeochemical cycling but is context-dependent.

12.
ISME J ; 16(2): 331-338, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34420034

RESUMO

Microbiome engineering is increasingly being employed as a solution to challenges in health, agriculture, and climate. Often manipulation involves inoculation of new microbes designed to improve function into a preexisting microbial community. Despite, increased efforts in microbiome engineering inoculants frequently fail to establish and/or confer long-lasting modifications on ecosystem function. We posit that one underlying cause of these shortfalls is the failure to consider barriers to organism establishment. This is a key challenge and focus of macroecology research, specifically invasion biology and restoration ecology. We adopt a framework from invasion biology that summarizes establishment barriers in three categories: (1) propagule pressure, (2) environmental filtering, and (3) biotic interactions factors. We suggest that biotic interactions is the most neglected factor in microbiome engineering research, and we recommend a number of actions to accelerate engineering solutions.


Assuntos
Microbiota , Agricultura , Ecologia
14.
Environ Microbiol ; 23(11): 6676-6693, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390621

RESUMO

Leaf litter decomposition is a major carbon input to soil, making it a target for increasing soil carbon storage through microbiome engineering. We expand upon previous findings to show with multiple leaf litter types that microbial composition can drive variation in carbon flow from litter decomposition and specific microbial community features are associated with synonymous patterns of carbon flow among litter types. Although plant litter type selects for different decomposer communities, within a litter type, microbial composition drives variation in the quantity of dissolved organic carbon (DOC) measured at the end of the decomposition period. Bacterial richness was negatively correlated with DOC quantity, supporting our hypothesis that across multiple litter types there are common microbial traits linked to carbon flow patterns. Variation in DOC abundance (i.e. high versus low DOC) driven by microbial composition is tentatively due to differences in bacterial metabolism of labile compounds, rather than catabolism of non-labile substrates such as lignin. The temporal asynchrony of metabolic processes across litter types may be a substantial impediment to discovering more microbial features common to synonymous patterns of carbon flow among litters. Overall, our findings support the concept that carbon flow may be programmed by manipulating microbial community composition.


Assuntos
Microbiota , Microbiologia do Solo , Carbono , Ciclo do Carbono , Ecossistema , Folhas de Planta , Solo/química
15.
Microb Ecol ; 82(2): 484-497, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33410932

RESUMO

Integrated measurements of fungi and bacteria are critical to understand how interactions between these taxa drive key processes in ecosystems ranging from soils to animal guts. High-throughput amplicon sequencing is commonly used to census microbiomes, but the genetic markers targeted for fungi and bacteria (typically ribosomal regions) are domain-specific so profiling must be performed separately, obscuring relationships between these groups. To solve this problem, we developed a spike-in method with an internal control (IC) construct containing primer sites commonly used for bacterial and fungal taxonomic profiling. The internal control offers several advantages: estimation of absolute abundances, estimation of fungal to bacterial ratios (F:B), integration of bacterial and fungal profiles for holistic community analysis, and lower costs compared to other quantitation methods. To validate the IC as a scaling method, we compared IC-derived measures of F:B to measures from quantitative PCR (qPCR) using a commercial mock community (the ZymoBiomic Microbial Community DNA Standard II, containing two fungi and eight bacteria) and complex environmental samples. For both the mock community and the environmental samples, the IC produced F:B values that were statistically consistent with qPCR. Merging the environmental fungal and bacterial profiles based on the IC-derived F:B values revealed new relationships among samples in terms of community similarity. This IC method is the first spike-in method to employ a single construct for cross-domain amplicon sequencing, offering more reliable measurements.


Assuntos
Fungos , Microbiota , Bactérias/genética , DNA Fúngico/genética , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala
16.
Front Microbiol ; 12: 799014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126334

RESUMO

Rapid microbial growth in the early phase of plant litter decomposition is viewed as an important component of soil organic matter (SOM) formation. However, the microbial taxa and chemical substrates that correlate with carbon storage are not well resolved. The complexity of microbial communities and diverse substrate chemistries that occur in natural soils make it difficult to identify links between community membership and decomposition processes in the soil environment. To identify potential relationships between microbes, soil organic matter, and their impact on carbon storage, we used sand microcosms to control for external environmental factors such as changes in temperature and moisture as well as the variability in available carbon that exist in soil cores. Using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) on microcosm samples from early phase litter decomposition, we found that protein- and tannin-like compounds exhibited the strongest correlation to dissolved organic carbon (DOC) concentration. Proteins correlated positively with DOC concentration, while tannins correlated negatively with DOC. Through random forest, neural network, and indicator species analyses, we identified 42 bacterial and 9 fungal taxa associated with DOC concentration. The majority of bacterial taxa (26 out of 42 taxa) belonged to the phylum Proteobacteria while all fungal taxa belonged to the phylum Ascomycota. Additionally, we identified significant connections between microorganisms and protein-like compounds and found that most taxa (12/14) correlated negatively with proteins indicating that microbial consumption of proteins is likely a significant driver of DOC concentration. This research links DOC concentration with microbial production and/or decomposition of specific metabolites to improve our understanding of microbial metabolism and carbon persistence.

17.
Sci Rep ; 10(1): 20916, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262382

RESUMO

The false widow spider Steatoda nobilis is associated with bites which develop bacterial infections that are sometimes unresponsive to antibiotics. These could be secondary infections derived from opportunistic bacteria on the skin or infections directly vectored by the spider. In this study, we investigated whether it is plausible for S. nobilis and other synanthropic European spiders to vector bacteria during a bite, by seeking to identify bacteria with pathogenic potential on the spiders. 11 genera of bacteria were identified through 16S rRNA sequencing from the body surfaces and chelicerae of S. nobilis, and two native spiders: Amaurobius similis and Eratigena atrica. Out of 22 bacterial species isolated from S. nobilis, 12 were related to human pathogenicity among which Staphylococcus epidermidis, Kluyvera intermedia, Rothia mucilaginosa and Pseudomonas putida are recognized as class 2 pathogens. The isolates varied in their antibiotic susceptibility: Pseudomonas putida, Staphylococcus capitis and Staphylococcus edaphicus showed the highest extent of resistance, to three antibiotics in total. On the other hand, all bacteria recovered from S. nobilis were susceptible to ciprofloxacin. Our study demonstrates that S. nobilis does carry opportunistic pathogenic bacteria on its body surfaces and chelicerae. Therefore, some post-bite infections could be the result of vector-borne bacterial zoonoses that may be antibiotic resistant.


Assuntos
Bactérias/crescimento & desenvolvimento , Resistência Microbiana a Medicamentos , Aranhas/microbiologia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , Venenos de Aranha/farmacologia
18.
Front Microbiol ; 11: 542220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240225

RESUMO

Discovering widespread microbial processes that drive unexpected variation in carbon cycling may improve modeling and management of soil carbon (Prescott, 2010; Wieder et al., 2015a, 2018). A first step is to identify community features linked to carbon cycle variation. We addressed this challenge using an epidemiological approach with 206 soil communities decomposing Ponderosa pine litter in 618 microcosms. Carbon flow from litter decomposition was measured over a 6-week incubation. Cumulative CO2 from microbial respiration varied two-fold among microcosms and dissolved organic carbon (DOC) from litter decomposition varied five-fold, demonstrating large functional variation despite constant environmental conditions where strong selection is expected. To investigate microbial features driving DOC concentration, two microbial community cohorts were delineated as "high" and "low" DOC. For each cohort, communities from the original soils and from the final microcosm communities after the 6-week incubation with litter were taxonomically profiled. A logistic model including total biomass, fungal richness, and bacterial richness measured in the original soils or in the final microcosm communities predicted the DOC cohort with 72 (P < 0.05) and 80 (P < 0.001) percent accuracy, respectively. The strongest predictors of the DOC cohort were biomass and either fungal richness (in the original soils) or bacterial richness (in the final microcosm communities). Successful forecasting of functional patterns after lengthy community succession in a new environment reveals strong historical contingencies. Forecasting future community function is a key advance beyond correlation of functional variance with end-state community features. The importance of taxon richness-the same feature linked to carbon fate in gut microbiome studies-underscores the need for increased understanding of biotic mechanisms that can shape richness in microbial communities independent of physicochemical conditions.

19.
mBio ; 11(5)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109758

RESUMO

Microbial probiotics are intended to improve functions in diverse ecosystems, yet probiotics often fail to establish in a preexisting microbiome. This is a species invasion problem. The relative importance of the two major factors controlling establishment in this context-propagule pressure (inoculation dose and frequency) and biotic interactions (composition of introduced and resident communities)-is unknown. We tested the effect of these factors in driving microbial composition and functioning following 12 microbial community invasions (e.g., introductions of many microbial invaders) in microcosms. Ecosystem functioning over a 30-day postinvasion period was assessed by measuring activity (respiration) and environment modification (dissolved organic carbon abundance). To test the dependence on environmental context, experiments were performed in two resource environments. In both environments, biotic interactions were more important than propagule pressure in driving microbial composition and community function, but the magnitude of effect varied by environment. Successful invaders comprised approximately 8% of the total number of operational taxonomic units (OTUs). Bacteria were better invaders than fungi, with average relative abundances of 7.4% ± 6.8% and 1.5% ± 1.4% of OTUs, respectively. Common bacterial invaders were associated with stress response traits. The most resilient bacterial and fungal families, in other words, those least impacted by invasions, were linked to antimicrobial resistance or production traits. Illuminating the principles that determine community composition and functioning following microbial invasions is key to efficient community engineering.IMPORTANCE With increasing frequency, humans are introducing new microbes into preexisting microbiomes to alter functioning. Example applications include modification of microflora in human guts for better health and those of soil for food security and/or climate management. Probiotic applications are often approached as trial-and-error endeavors and have mixed outcomes. We propose that increased success in microbiome engineering may be achieved with a better understanding of microbial invasions. We conducted a microbial community invasion experiment to test the relative importance of propagule pressure and biotic interactions in driving microbial community composition and ecosystem functioning in microcosms. We found that biotic interactions were more important than propagule pressure in determining the impact of microbial invasions. Furthermore, the principles for community engineering vary among organismal groups (bacteria versus fungi).


Assuntos
Fenômenos Fisiológicos Bacterianos , Meio Ambiente , Interações Microbianas , Microbiota , Bactérias , Fungos/fisiologia
20.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627825

RESUMO

Discovering widespread microbial processes that create variation in soil carbon (C) cycling within ecosystems may improve soil C modeling. Toward this end, we screened 206 soil communities decomposing plant litter in a common garden microcosm environment and examined features linked to divergent patterns of C flow. C flow was measured as carbon dioxide (CO2) and dissolved organic carbon (DOC) from 44-days of litter decomposition. Two large groups of microbial communities representing 'high' and 'low' DOC phenotypes from original soil and 44-day microcosm samples were down-selected for fungal and bacterial profiling. Metatranscriptomes were also sequenced from a smaller subset of communities in each group. The two groups exhibited differences in average rate of CO2 production, demonstrating that the divergent patterns of C flow arose from innate functional constraints on C metabolism, not a time-dependent artefact. To infer functional constraints, we identified features - traits at the organism, pathway or gene level - linked to the high and low DOC phenotypes using RNA-Seq approaches and machine learning approaches. Substrate use differed across the high and low DOC phenotypes. Additional features suggested that divergent patterns of C flow may be driven in part by differences in organism interactions that affect DOC abundance directly or indirectly by controlling community structure.


Assuntos
Microbiota , Solo , Bactérias/genética , Dióxido de Carbono , Plantas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...