Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 88(6): 2447-2460, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36046917

RESUMO

PURPOSE: To demonstrate the utility of continuous-wave (CW) saturation pulses in xenon-polarization transfer contrast (XTC) MRI and MRS, to investigate the selectivity of CW pulses applied to dissolved-phase resonances, and to develop a correction method for measurement biases from saturation of the nontargeted dissolved-phase compartment. METHODS: Studies were performed in six healthy Sprague-Dawley rats over a series of end-exhale breath holds. Discrete saturation schemes included a series of 30 Gaussian pulses (8 ms FWHM), spaced 25 ms apart; CW saturation schemes included single block pulses, with variable flip angle and duration. In XTC imaging, saturation pulses were applied on both dissolved-phase resonance frequencies and off-resonance, to correct for other sources of signal loss and compromised selectivity. In spectroscopy experiments, saturation pulses were applied at a set of 19 frequencies spread out between 185 and 200 ppm to map out modified z-spectra. RESULTS: Both modified z-spectra and imaging results showed that CW RF pulses offer sufficient depolarization and improved selectivity for generating contrast between presaturation and postsaturation acquisitions. A comparison of results obtained using a variety of saturation parameters confirms that saturation pulses applied at higher powers exhibit increased cross-contamination between dissolved-phase resonances. CONCLUSION: Using CW RF saturation pulses in XTC contrast preparation, with the proposed correction method, offers a potentially more selective alternative to traditional discrete saturation. The suppression of the red blood cell contribution to the gas-phase depolarization opens the door to a novel way of quantifying exchange time between alveolar volume and hemoglobin.


Assuntos
Isótopos de Xenônio , Xenônio , Animais , Pulmão , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Sprague-Dawley , Isótopos de Xenônio/química
2.
Magn Reson Med ; 85(5): 2709-2722, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283943

RESUMO

PURPOSE: To demonstrate the feasibility of generating red blood cell (RBC) and tissue/plasma (TP)-specific gas-phase (GP) depolarization maps using xenon-polarization transfer contrast (XTC) MR imaging. METHODS: Imaging was performed in three healthy subjects, an asymptomatic smoker, and a chronic obstructive pulmonary disease (COPD) patient. Single-breath XTC data were acquired through a series of three GP images using a 2D multi-slice GRE during a 12 s breath-hold. A series of 8 ms Gaussian inversion pulses spaced 30 ms apart were applied in-between the images to quantify the exchange between the GP and dissolved-phase (DP) compartments. Inversion pulses were either centered on-resonance to generate contrast, or off-resonance to correct for other sources of signal loss. For an alternative scheme, inversions of both RBC and TP resonances were inserted in lieu of off-resonance pulses. Finally, this technique was extended to a multi-breath protocol consistent with tidal breathing, involving 30 consecutive acquisitions. RESULTS: Inversion pulses shifted off-resonance by 20 ppm to mimic the distance between the RBC and TP resonances demonstrated selectivity, and initial GP depolarization maps illustrated stark magnitude and distribution differences between healthy and diseased subjects that were consistent with traditional approaches. CONCLUSION: The proposed DP-compartment selective XTC MRI technique provides information on gas exchange between all three detectable states of xenon in the lungs and is sufficiently sensitive to indicate differences in lung function between the study subjects. Investigated extensions of this approach to imaging schemes that either minimize breath-hold duration or the overall number of breath-holds open avenues for future research to improve measurement accuracy and patient comfort.


Assuntos
Troca Gasosa Pulmonar , Isótopos de Xenônio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Xenônio
3.
Magn Reson Med ; 84(6): 3027-3039, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32557808

RESUMO

PURPOSE: To investigate biases in the measurement of apparent alveolar septal wall thickness (SWT) with hyperpolarized xenon-129 (HXe) as a function of acquisition parameters. METHODS: The HXe MRI scans with simultaneous gas-phase and dissolved-phase excitation were performed using 1-dimensional projection scans in mechanically ventilated rabbits. The dissolved-phase magnetization was periodically saturated, and the dissolved-phase xenon uptake dynamics were measured at end inspiration and end expiration with temporal resolutions up to 10 ms using a Look-Locker-type acquisition. The apparent alveolar septal wall thickness was extracted by fitting the signal to a theoretical model, and the findings were compared with those from the more commonly use chemical shift saturation recovery MRI spectroscopy technique with several different delay time arrangements. RESULTS: It was found that repeated application of RF saturation pulses in chemical shift saturation recovery acquisitions caused exchange-dependent gas-phase saturation that heavily biased the derived SWT value. When this bias was reduced by our proposed method, the SWT dependence on lung inflation disappeared due to an inherent insensitivity of HXe dissolved-phase MRI to thin alveolar structures with very short T2∗ . Furthermore, perfusion-based macroscopic gas transport processes were demonstrated to cause increasing apparent SWTs with TE (2.5 µm/ms at end expiration) and a lung periphery-to-center SWT gradient. CONCLUSION: The apparent SWT measured with HXe MRI was found to be heavily dependent on the acquisition parameters. A method is proposed that can minimize this measurement bias, add limited spatial resolution, and reduce measurement time to a degree that free-breathing studies are feasible.


Assuntos
Pulmão , Isótopos de Xenônio , Animais , Viés , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Coelhos
4.
IEEE Trans Med Imaging ; 38(9): 2081-2091, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30990426

RESUMO

Hyperpolarized 129Xe magnetic resonance imaging is a powerful modality capable of assessing lung structure and function. While it has shown promise as a clinical tool for the longitudinal assessment of lung function, its utility as an investigative tool for animal models of pulmonary diseases is limited by the necessity of invasive intubation and mechanical ventilation procedures. In this paper, we overcame this limitation by developing a gas delivery system and implementing a set of imaging schemes to acquire high-resolution gas- and dissolved-phase images in free-breathing mice. Gradient echo pulse sequences were used to acquire both high- and low-resolution gas-phase images, and regional fractional ventilation was quantified by comparing signal buildup among low-resolution gas-phase images acquired at two flip-angles. Dissolved-phase images were acquired using both ultra-short echo time and chemical shift imaging sequences with discrete sets of flip-angle/repetition time combinations to visualize gas uptake and distribution throughout the body. Spectral features distinct to various anatomical regions were identified in images acquired using the latter sequence and were used for the quantification of gas arrival times for respective compartments.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio , Animais , Desenho de Equipamento , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Respiração , Isótopos de Xenônio/administração & dosagem , Isótopos de Xenônio/química
5.
Sci Rep ; 9(1): 2413, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787357

RESUMO

While hyperpolarized xenon-129 (HXe) MRI offers a wide array of tools for assessing functional aspects of the lung, existing techniques provide only limited quantitative information about the impact of an observed pathology on overall lung function. By selectively destroying the alveolar HXe gas phase magnetization in a volume of interest and monitoring the subsequent decrease in the signal from xenon dissolved in the blood inside the left ventricle of the heart, it is possible to directly measure the contribution of that saturated lung volume to the gas transport capacity of the entire lung. In mechanically ventilated rabbits, we found that both xenon gas transport and transport efficiency exhibited a gravitation-induced anterior-to-posterior gradient that disappeared or reversed direction, respectively, when the animal was turned from supine to prone position. Further, posterior ventilation defects secondary to acute lung injury could be re-inflated by applying positive end expiratory pressure, although at the expense of decreased gas transport efficiency in the anterior volumes. These findings suggest that our technique might prove highly valuable for evaluating lung transplants and lung resections, and could improve our understanding of optimal mechanical ventilator settings in acute lung injury.


Assuntos
Gases/metabolismo , Coração/fisiologia , Pulmão/metabolismo , Troca Gasosa Pulmonar/fisiologia , Animais , Ventrículos do Coração/efeitos dos fármacos , Humanos , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Decúbito Ventral , Coelhos , Respiração Artificial , Função Ventricular/fisiologia , Isótopos de Xenônio/farmacologia
6.
Acad Radiol ; 26(3): 367-382, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30630659

RESUMO

RATIONALE AND OBJECTIVES: In this study, we compared a newly developed multibreath simultaneous alveolar oxygen tension and apparent diffusion coefficient (PAO2-ADC) imaging sequence to a single-breath acquisition, with the aim of mitigating the compromising effects of intervoxel flow and slow-filling regions on single-breath measurements, especially in chronic obstructive pulmonary disease (COPD) subjects. MATERIALS AND METHODS: Both single-breath and multibreath simultaneous PAO2-ADC imaging schemes were performed on a total of 10 human subjects (five asymptomatic smokers and five COPD subjects). Estimated PAO2 and ADC values derived from the different sequences were compared both globally and regionally. The distribution of voxels with nonphysiological values was also compared between the two schemes. RESULTS: The multibreath protocol decreased the ventilation defect volumes by an average of 12.9 ± 6.6%. The multibreath sequence generated nonphysiological PAO2 values in 11.0 ± 8.5% fewer voxels than the single-breath sequence. Single-breath PAO2 maps also showed more regions with gas-flow artifacts and general signal heterogeneity. On average, the standard deviation of the PAO2 distribution was 16.5 ± 7.0% lower using multibreath PAO2-ADC imaging, suggesting a more homogeneous gas distribution. Both mean and standard deviation of the ADC increased significantly from single- to multibreath imaging (p = 0.048 and p = 0.070, respectively), suggesting more emphysematous regions in the slow-filling lung. CONCLUSION: Multibreath PAO2-ADC imaging provides superior accuracy and efficiency compared to previous imaging protocols. PAO2 and ADC maps generated by multibreath imaging allowed for the qualification of various regions as emphysematous or obstructed, which single-breath PAO2 maps can only identify as defects. The simultaneous PAO2 and ADC measurements generated by the presented multibreath method were also more physiologically realistic, and allowed for more detailed analysis of the slow-filling regions characteristic of COPD subjects.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Enfisema/diagnóstico por imagem , Oxigênio/análise , Alvéolos Pulmonares/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Hélio , Humanos , Isótopos , Masculino , Pessoa de Meia-Idade , Pressão Parcial , Respiração
7.
Acad Radiol ; 26(3): 383-394, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30087068

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study was to assess the effectiveness of hyperpolarized helium-3 magnetic resonance (MR)-based imaging markers in predicting future forced expiratory volume in one second decline/chronic obstructive pulmonary disorder progression in smokers compared to current diagnostic techniques. MATERIALS AND METHODS: Total 60 subjects (15 nonsmokers and 45 smokers) participated in both baseline and follow-up visits (∼1.4 years apart). At both visits, subjects completed pulmonary function testing, a six-minute walk test , and the St. George Respiratory Questionnaire. Using helium-3 MR imaging, means (M) and standard deviations (H) of oxygen tension (PAO2), fractional ventilation, and apparent diffusion coefficient were calculated across 12 regions of interest in the lungs. Subjects who experienced FEV1 decline >100 mL/year were deemed "decliners," while those who did not were deemed "sustainers." Nonimaging and imaging prediction models were generated through a logistic regression model, which utilized measurements from sustainers and decliners. RESULTS: The nonimaging prediction model included the St. George Respiratory Questionnaire total score, diffusing capacity of carbon monoxide by the alveolar volume (DLCO/VA), and distance walked in a six-minute walk test. A receiving operating character curve for this model yielded a sensitivity of 75% and specificity of 68% with an overall area under the curve of 65%. The imaging prediction model generated following the same methodology included ADCH, FVH, and PAO2H. The resulting receiving operating character curve yielded a sensitivity of 87.5%, specificity of 82.8%, and an area under the curve of 89.7%. CONCLUSION: The imaging predication model generated from measurements obtained during 3He MR imaging is better able to predict future FEV1 decline compared to one based on current clinical tests and demographics. The imaging model's superiority appears to arise from its ability to distinguish well-circumscribed, severe disease from a more uniform distribution of moderately altered lung function, which is more closely associated with subsequent FEV1 decline.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Fumar/fisiopatologia , Adulto , Área Sob a Curva , Estudos de Casos e Controles , Progressão da Doença , Volume Expiratório Forçado , Hélio , Humanos , Isótopos , Pessoa de Meia-Idade , Oxigênio , Pressão Parcial , Capacidade de Difusão Pulmonar , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Curva ROC , Teste de Caminhada
8.
Magn Reson Med ; 81(3): 1784-1794, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346083

RESUMO

PURPOSE: To investigate the feasibility of describing the impact of any flip angle-TR combination on the resulting distribution of the hyperpolarized xenon-129 (HXe) dissolved-phase magnetization in the chest using a single virtual parameter, TR90°,equiv . METHODS: HXe MRI scans with simultaneous gas- (GP) and dissolved-phase (DP) excitation were performed using 2D projection scans in mechanically ventilated rabbits. Measurements with DP flip angles ranging from 6-90° and TRs ranging from 8.3-500 ms were conducted. DP maps based on acquisitions of similar radio frequency pulse-induced relaxation rates were compared. RESULTS: The observed distribution of the DP magnetization was strongly affected by acquisition flip angle and TR. However, for flip angles up to 60°, measurements with the same radio frequency pulse-induced relaxation rates, resulted in very similar DP images despite the presence of significant macroscopic gas transport processes. For flip angles approaching 90°, the downstream signal component decreased noticeably relative to acquisitions with lower flip angles. Nevertheless, the total DP signal continued to follow an empirically verified conversion equation over the entire investigated parameter range, which yields the equivalent TR of a hypothetical 90° measurement for any experimental flip angle-TR combination. CONCLUSION: We have introduced a method for converting the flip angle and TR of a given HXe DP measurement to a standardized metric based on the virtual quantity, TR90°,equiv , using their equivalent RF relaxation rates. This conversion permits the comparison of measurements obtained with different pulse sequence types or by different research groups using various acquisition parameters.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/química , Algoritmos , Animais , Calibragem , Simulação por Computador , Estudos de Viabilidade , Ventrículos do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Magnetismo , Imagens de Fantasmas , Circulação Pulmonar , Coelhos , Respiração Artificial , Imagem Corporal Total/métodos
9.
Sci Rep ; 8(1): 7310, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743565

RESUMO

Many forms of lung disease manifest themselves as pathological changes in the transport of gas to the circulatory system, yet the difficulty of imaging this process remains a central obstacle to the comprehensive diagnosis of lung disorders. Using hyperpolarized xenon-129 as a surrogate marker for oxygen, we derived the temporal dynamics of gas transport from the ratio of two lung images obtained with different timing parameters. Additionally, by monitoring changes in the total hyperpolarized xenon signal intensity in the left side of the heart induced by depletion of xenon signal in the alveolar airspaces of interest, we quantified the contributions of selected lung volumes to the total pulmonary gas transport. In a rabbit model, we found that it takes at least 200 ms for xenon gas to enter the lung tissue and travel the distance from the airspaces to the heart. Additionally, our method shows that both lungs contribute fairly equally to the gas transport in healthy rabbits, but that this ratio changes in a rabbit model of acid aspiration. These results suggest that hyperpolarized xenon-129 MRI may improve our ability to measure pulmonary gas transport and detect associated pathological changes.


Assuntos
Imageamento por Ressonância Magnética , Troca Gasosa Pulmonar , Isótopos de Xenônio/metabolismo , Animais , Coelhos
10.
Magn Reson Med ; 80(6): 2439-2448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29682792

RESUMO

PURPOSE: To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. METHODS: Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. RESULTS: Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. CONCLUSION: 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations.


Assuntos
Suspensão da Respiração , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Gases , Troca Gasosa Pulmonar , Coelhos , Respiração Artificial , Imagem Corporal Total , Isótopos de Xenônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...