Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35960659

RESUMO

A mesophilic sulphate-reducing micro-organism, able to grow chemolithoautotrophically with H2/CO2 (20 : 80) and with elemental iron as a sole electron donor, was isolated from a consortium capable of degrading long-chain paraffins and designated strain DRH4T. Cells were oval shaped often with bright refractile cores and occurred singly or in pairs. The cells formed pili. Strain DRH4T could grow chemolithoautotrophically with H2/CO2 or elemental iron and chemoorganotrophically utilizing a number of organic substrates, such as fatty acids from formate to octanoate (C1-C8). Sulphate and thiosulphate served as terminal electron acceptors, but sulphite and nitrate did not. Optimal growth was observed from 37 to 40 °C and pH from 6.5 to 7.2. Strain DRH4T did not require NaCl for growth and could proliferate under a broad range of salinities from freshwater (1 g l-1 NaCl) to seawater (27 g l-1 NaCl) conditions. The genomic DNA G+C content was 54.46 mol %. Based on 16S rRNA gene sequence analysis. strain DRH4T was distinct from previously described Deltaproteobacteria species exhibiting the closest affiliation to Desulforhabdus amnigena ASRB1T, Syntrophobacterium sulfatireducens TB8106T and Desulfovirga adipica 12016T with 93.35, 93.42 and 92.85 % similarity, respectively. Strain DRH4T showed significant physiological differences with the aforementioned organisms. Based on physiological differences and phylogenetic comparisons, we propose to classify DRH4T as the type strain (=DSM 113 455T=JCM 39 248T) of a novel species of a new genus with the name Desulfoferrobacter suflitae gen. nov., sp. nov.


Assuntos
Deltaproteobacteria , Processos Autotróficos , Técnicas de Tipagem Bacteriana , Composição de Bases , Dióxido de Carbono , DNA Bacteriano/genética , Ácidos Graxos/química , Hidrogênio , Ferro , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Sulfatos
2.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737364

RESUMO

Here, we report the genome sequence of Clostridium sp. strain P21, isolated from old hay from Stillwater, Oklahoma. This announcement describes the generation and annotation of the 5.6-Mb genomic sequence of strain P21, which will aid in studies targeting genes involved in the enhancement of acid-alcohol production.

3.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327521

RESUMO

Anaerobic alkane metabolism is critical in multiple environmental and industrial sectors, including environmental remediation, energy production, refined fuel stability, and biocorrosion. Here, we report the complete gap-closed genome sequence for a model n-alkane-degrading anaerobe, Desulfoglaeba alkanexedens ALDC.

4.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31281924

RESUMO

Community compositional changes and the corrosion of carbon steel in the presence of different electron donor and acceptor combinations were examined with a methanogenic consortium enriched for its ability to mineralize paraffins. Despite cultivation in the absence of sulfate, metagenomic analysis revealed the persistence of several sulfate-reducing bacterial taxa. Upon sulfate amendment, the consortium was able to couple C28H58 biodegradation with sulfate reduction. Comparative analysis suggested that Desulforhabdus and/or Desulfovibrio likely supplanted methanogens as syntrophic partners needed for C28H58 mineralization. Further enrichment in the absence of a paraffin revealed that the consortium could also utilize carbon steel as a source of electrons. The severity of both general and localized corrosion increased in the presence of sulfate, regardless of the electron donor utilized. With carbon steel as an electron donor, Desulfobulbus dominated in the consortium and electrons from iron accounted for ∼92% of that required for sulfate reduction. An isolated Desulfovibrio spp. was able to extract electrons from iron and accelerate corrosion. Thus, hydrogenotrophic partner microorganisms required for syntrophic paraffin metabolism can be readily substituted depending on the availability of an external electron acceptor and a single paraffin-degrading consortium harbored microbes capable of both chemical and electrical microbially influenced iron corrosion.


Assuntos
Deltaproteobacteria/metabolismo , Desulfovibrio/metabolismo , Ferro/metabolismo , Parafina/metabolismo , Aço/química , Anaerobiose/fisiologia , Corrosão , Consórcios Microbianos/fisiologia , Oxirredução , Sulfatos/metabolismo
5.
J Microbiol Methods ; 158: 6-13, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30677454

RESUMO

Three replicate seawater samples were collected on three different days, filtered immediately and preserved with one of two guanidinium thiocyanate-based preservatives (DNAzol™ or RNA Lysis Buffer™ plus ß-mercaptoethanol (RLA+)) and were kept frozen while being shipped to a lab. In parallel, a carboy of seawater was collected on each of the three days and maintained at ambient temperature while being shipped to a lab. Upon receipt the samples were filtered and treated in the same manner as for immediate preservation. Significantly more DNA was obtained from samples immediately preserved with DNAzol than the corresponding shipped samples for 2 of the 3 days. More DNA was extracted from DNAzol preserved samples but more RNA was obtained from RLA+ preserved samples. A protocol was designed to extract both DNA and RNA from split samples preserved with RLA+ and cDNA was synthesized from the RNA. Three high-throughput 16S rRNA gene libraries were constructed, one from DNA preserved with DNAzol, one from DNA preserved with RLA+ and one from cDNA (RLA+ preserved). Greater alpha diversity was found for libraries constructed from immediately preserved vs. shipped samples for both preservation types, with immediate preservation with DNAzol obtaining the highest level of diversity. Libraries constructed from immediately preserved (RLA+) DNA had greater alpha diversity than libraries constructed from shipped preserved (RLA+) DNA or cDNA. Unifrac measures of beta diversity showed clearer separation of sample types and a greater % variance explained for weighted than for unweighted principal coordinate analysis (PCoA) plots, indicating sample types varied more in their relative abundance of taxa than the presence/absence of particular taxa. We recommend immediate preservation of seawater samples, with DNAzol as the preferred preservative if quantification via qPCR will be performed or the highest alpha diversity is desired but preservation with RLA+ if RNA will be extracted.


Assuntos
DNA Bacteriano/isolamento & purificação , Preservação Biológica/métodos , RNA Ribossômico 16S/isolamento & purificação , Manejo de Espécimes/métodos , Archaea/classificação , Bactérias/classificação , Biodiversidade , Variação Genética , Água do Mar/microbiologia , Análise de Sequência de DNA
6.
J Microbiol Methods ; 150: 55-60, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803719

RESUMO

Microbially influenced corrosion (MIC), also known as biocorrosion, has significant impacts on the environment and economy. Typical systems to study biocorrosion are either dynamic (once-through flow) or static (serum bottle incubations). Dynamic systems can be materials and personnel intensive, while static systems quickly become nutrient limiting and exhibit long incubations. A semi-continuous biocorrosion cell was developed to address these issues. Low carbon shim steel was used as a test surface. Initial results revealed that 50 ppm glutaraldehyde (GLT), a common oil field biocide, in an abiotic cell was 3.6 times more corrosive (24.5 × 10-3 mm/y) than a biocorrosion cell inoculated with a sulfate-reducing bacteria (SRB) enrichment (6.73 × 10-3 mm/y). The SRB inoculated cell treated with GLT (50 ppm) reduced the corrosion rate from 6.73 × 10-3 mm/y to 3.68 × 10-3 mm/y. It was hypothesized that a biocide-surfactant combination would enhance biocide activity, thereby lowering corrosion in a semi-continuous biocorrosion cell. The biocide and surfactant were GLT (30 ppm) and Tween 80 (TW80; 100 ppm). MIC of SRB increased in the presence of a non-inhibitory concentration of GLT (23.4 × 10-3 mm/y), compared to the untreated +SRB condition (8.29 × 10-3 mm/y). The non-ionic surfactant alone reduced MIC (4.57 × 10-3 mm/y) and even more so in combination with GLT (3.69 × 10-3 mm/y). Over 50% of 16S rDNA sequences in the biofilm on the test surface were identified as belonging to the genera Desulfovibrio and Desulfomicrobium. The utility of a semi-continuous system for MIC studies and biocide testing was demonstrated. The concept of regular partial medium replacement is applicable to different corrosion cell and corrosion coupon geometries. Biocide-surfactant combinations may have the potential to reduce the concentration of biocides used in the field. In addition, a semi-defined medium for enumerating Acid-Producing Bacteria (APB) was developed, resulting in higher recoveries compared to a standard phenol red medium (e.g., 1.1 × 104 APB/cm2 vs < 4 × 10-1 APB/cm2).


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Glutaral/farmacologia , Bactérias Redutoras de Enxofre/efeitos dos fármacos , Ácidos/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Carbono , Corrosão , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Oxirredução , Aço/química , Sulfatos/metabolismo , Sulfetos , Propriedades de Superfície
7.
Chemosphere ; 195: 427-436, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29274988

RESUMO

Fuel biodegradation linked to sulfate reduction can lead to corrosion of the metallic infrastructure in a variety of marine environments. However, the biological stability of emerging biofuels and their potential impact on copper-nickel alloys commonly used in marine systems has not been well documented. Two potential naval biofuels (Camelina-JP5 and Fisher-Tropsch-F76) and their petroleum-derived counterparts (JP5 and F76) were critically assessed in seawater/sediment incubations containing a metal coupon (70/30 Cu-Ni alloy). Relative to a fuel-unamended control (1.2 ±â€¯0.4 µM/d), Camelina-JP5 (86.4 ±â€¯1.6 µM/d) and JP5 (77.6 ±â€¯8.3 µM/d) stimulated much higher rates of sulfate reduction than either FT-F76 (11.4 ±â€¯2.7 µM/d) or F76 (38.4 ±â€¯3.7 µM/d). The general corrosion rate (r2 = 0.91) and pitting corrosion (r2 = 0.92) correlated with sulfate loss in these incubations. Despite differences in microbial community structure on the metal or in the aqueous or sediment phases, sulfate reducing bacteria affiliated with Desulfarculaceae and Desulfobacteraceae became predominant upon fuel amendment. The identification of alkylsuccinates and alkylbenzylsuccinates attested to anaerobic metabolism of fuel hydrocarbons. Sequences related to Desulfobulbaceae were highly enriched (34.2-64.8%) on the Cu-Ni metal surface, regardless of whether the incubation received a fuel amendment. These results demonstrate that the anaerobic metabolism of biofuel linked to sulfate reduction can exacerbate the corrosion of Cu-Ni alloys. Given the relative lability of Camelina-JP5, particular precaution should be taken when incorporating this hydroprocessed biofuel into marine environments serviced by a Cu-Ni metallic infrastructure.


Assuntos
Ligas/química , Biocombustíveis/microbiologia , Cobre/química , Níquel/química , Água do Mar/química , Anaerobiose , Biodegradação Ambiental , Corrosão , Hidrocarbonetos/metabolismo , Sulfatos/metabolismo
8.
Appl Microbiol Biotechnol ; 101(16): 6517-6529, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28597336

RESUMO

Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L-1) levels of hydrogen sulfide and high numbers (107 mL-1) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Incrustação Biológica , Metais/metabolismo , Indústria de Petróleo e Gás , Petróleo/microbiologia , Microbiologia da Água , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Corrosão , Sulfeto de Hidrogênio/análise , Consórcios Microbianos , Indústria de Petróleo e Gás/economia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(12): 3085-3090, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265087

RESUMO

Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.


Assuntos
Aprendizagem Baseada em Problemas/normas , Ciência/educação , Ensino/normas , Humanos , Som , Estudantes , Tecnologia , Universidades/normas
10.
Front Microbiol ; 8: 99, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197141

RESUMO

Corrosion processes in two North Sea oil production pipelines were studied by analyzing pig envelope samples via metagenomic and metabolomic techniques. Both production systems have similar physico-chemical properties and injection waters are treated with nitrate, but one pipeline experiences severe corrosion and the other does not. Early and late pigging material was collected to gain insight into the potential causes for differential corrosion rates. Metabolites were extracted and analyzed via ultra-high performance liquid chromatography/high-resolution mass spectrometry with electrospray ionization (ESI) in both positive and negative ion modes. Metabolites were analyzed by comparison with standards indicative of aerobic and anaerobic hydrocarbon metabolism and by comparison to predicted masses for KEGG metabolites. Microbial community structure was analyzed via 16S rRNA gene qPCR, sequencing of 16S PCR products, and MySeq Illumina shotgun sequencing of community DNA. Metagenomic data were used to reconstruct the full length 16S rRNA genes and genomes of dominant microorganisms. Sequence data were also interrogated via KEGG annotation and for the presence of genes related to terminal electron accepting (TEA) processes as well as aerobic and anaerobic hydrocarbon degradation. Significant and distinct differences were observed when comparing the 'high corrosion' (HC) and the 'low corrosion' (LC) pipeline systems, especially with respect to the TEA utilization potential. The HC samples were dominated by sulfate-reducing bacteria (SRB) and archaea known for their ability to utilize simple carbon substrates, whereas LC samples were dominated by pseudomonads with the genetic potential for denitrification and aerobic hydrocarbon degradation. The frequency of aerobic hydrocarbon degradation genes was low in the HC system, and anaerobic hydrocarbon degradation genes were not detected in either pipeline. This is in contrast with metabolite analysis, which demonstrated the presence of several succinic acids in HC samples that are diagnostic of anaerobic hydrocarbon metabolism. Identifiable aerobic metabolites were confined to the LC samples, consistent with the metagenomic data. Overall, these data suggest that corrosion management might benefit from a more refined understanding of microbial community resilience in the face of disturbances such as nitrate treatment or pigging, which frequently prove insufficient to alter community structure toward a stable, less-corrosive assemblage.

11.
J Biotechnol ; 256: 68-75, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28235610

RESUMO

Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8µM/d) relative to incubations receiving a hydroprocessed biofuel (16.1µM/d) or a fuel-unamended control (17.8µM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels.


Assuntos
Gasolina , Aço/química , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono , Corrosão , DNA Bacteriano/análise , Hidrocarbonetos/metabolismo , RNA Ribossômico 16S/genética , Navios
12.
J Ind Microbiol Biotechnol ; 44(2): 167-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28013395

RESUMO

Navy vessels consist of various metal alloys and biofilm accumulation at the metal surface is thought to play a role in influencing metal deterioration. To develop better strategies to monitor and control metallic biofilms, it is necessary to resolve the bacterial composition within the biofilm. This study aimed to determine if differences in electrochemical current could influence the composition of dominant bacteria in a metallic biofilm, and if so, determine the level of resolution using metagenomic amplicon sequencing. Current was generated by creating galvanic couples between cathodes made from stainless steel and anodes made from carbon steel, aluminum, or copper nickel and exposing them in the Delaware Bay. Stainless steel cathodes (SSCs) coupled to aluminum or carbon steel generated a higher mean current (0.39 mA) than that coupled to copper nickel (0.17 mA). Following 3 months of exposure, the bacterial composition of biofilms collected from the SSCs was determined and compared. Dominant bacterial taxa from the two higher current SSCs were different from that of the low-current SSC as determined by DGGE and verified by Illumina DNA-seq analysis. These results demonstrate that electrochemical current could influence the composition of dominant bacteria in metallic biofilms and that amplicon sequencing is sufficient to complement current methods used to study metallic biofilms in marine environments.


Assuntos
Bactérias/isolamento & purificação , Biofilmes , Eletrodos/microbiologia , Água do Mar/microbiologia , Aço Inoxidável , Alumínio/química , Bactérias/classificação , Carbono/química , Clonagem Molecular , Cobre/química , DNA Bacteriano/isolamento & purificação , Biblioteca Gênica , Níquel/química , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA
13.
Front Microbiol ; 7: 988, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446028

RESUMO

Microbial activity associated with produced water from hydraulic fracturing operations can lead to gas souring and corrosion of carbon-steel equipment. We examined the microbial ecology of produced water and the prospective role of the prevalent microorganisms in corrosion in a gas production field in the Barnett Shale. The microbial community was mainly composed of halophilic, sulfidogenic bacteria within the order Halanaerobiales, which reflected the geochemical conditions of highly saline water containing sulfur species (S2O3 (2-), SO4 (2-), and HS(-)). A predominant, halophilic bacterium (strain DL-01) was subsequently isolated and identified as belonging to the genus Halanaerobium. The isolate could degrade guar gum, a polysaccharide polymer used in fracture fluids, to produce acetate and sulfide in a 10% NaCl medium at 37°C when thiosulfate was available. To mitigate potential deleterious effects of sulfide and acetate, a quaternary ammonium compound was found to be an efficient biocide in inhibiting the growth and metabolic activity of strain DL-01 relative to glutaraldehyde and tetrakis (hydroxymethyl) phosphonium sulfate. Collectively, our findings suggest that predominant halophiles associated with unconventional shale gas extraction could proliferate and produce sulfide and acetate from the metabolism of polysaccharides used in hydraulic fracturing fluids. These metabolic products might be returned to the surface and transported in pipelines to cause pitting corrosion in downstream infrastructure.

14.
Environ Microbiol ; 18(8): 2604-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27198766

RESUMO

Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/metabolismo , Fumaratos/metabolismo , Methanomicrobiales/metabolismo , Parafina/metabolismo , Biodegradação Ambiental , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Metabolismo Energético/fisiologia , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenômica , Methanomicrobiales/classificação , Methanomicrobiales/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética
15.
Front Microbiol ; 6: 979, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483760

RESUMO

Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oswiecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.

16.
Biofouling ; 30(7): 823-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115517

RESUMO

Microbially influenced corrosion (MIC) has long been implicated in the deterioration of carbon steel in oil and gas pipeline systems. The authors sought to identify and characterize sessile biofilm communities within a high-temperature oil production pipeline, and to compare the profiles of the biofilm community with those of the previously analyzed planktonic communities. Eubacterial and archaeal 16S rRNA sequences of DNA recovered from extracted pipeline pieces, termed 'cookies,' revealed the presence of thermophilic sulfidogenic anaerobes, as well as mesophilic aerobes. Electron microscopy and elemental analysis of cookies confirmed the presence of sessile cells and chemical constituents consistent with corrosive biofilms. Mass spectrometry of cookie acid washes identified putative hydrocarbon metabolites, while surface profiling revealed pitting and general corrosion damage. The results suggest that in an established closed system, the biofilm taxa are representative of the planktonic eubacterial and archaeal community, and that sampling and monitoring of the planktonic bacterial population can offer insight into biocorrosion activity. Additionally, hydrocarbon biodegradation is likely to sustain these communities. The importance of appropriate sample handling and storage procedures to oilfield MIC diagnostics is highlighted.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes/classificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Corrosão , DNA Bacteriano/genética , Indústrias Extrativas e de Processamento , RNA Ribossômico 16S/genética , Aço/química
17.
Front Microbiol ; 5: 89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24639674

RESUMO

Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

18.
Bioelectrochemistry ; 97: 145-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24411308

RESUMO

Two coastal seawaters (Key West, FL, USA and the Persian Gulf, Bahrain, representing oligotrophic and eutrophic environments, respectively) were used to evaluate potential biodegradation and corrosion problems during exposure to alternative and conventional fuels. Uncoated carbon steel was exposed at the fuel/seawater interface and polarization resistance was monitored. Under typical marine storage conditions, dioxygen in natural seawater exposed to fuel and carbon steel was reduced to <0.1parts-per-million within 2d due to consumption by corrosion reactions and aerobic microbial respiration. Sulfides, produced by anaerobic sulfate-reducing bacteria, and chlorides were co-located in corrosion products. Transient dioxygen influenced both metabolic degradation pathways and resulting metabolites. Catechols, indicative of aerobic biodegradation, persisted after 90d exposures. Detection of catechols suggested that initial exposure to dioxygen resulted in the formation of aerobic metabolites that exacerbated subsequent corrosion processes.


Assuntos
Biocombustíveis , Água do Mar/microbiologia , Aço/química , Bactérias Anaeróbias/fisiologia , Biodegradação Ambiental , Biocombustíveis/análise , Biocombustíveis/microbiologia , Corrosão , Combustíveis Fósseis/análise , Combustíveis Fósseis/microbiologia , Oxigênio/análise , Oxigênio/metabolismo , Água do Mar/química , Sulfetos/análise , Sulfetos/metabolismo
19.
Appl Microbiol Biotechnol ; 98(2): 907-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23636692

RESUMO

A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H2S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor "A", two received corrosion inhibitor "B", and two ("untreated") received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC.


Assuntos
Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Corrosão , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Environ Sci Technol ; 47(11): 6052-62, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23614475

RESUMO

Ultralow sulfur diesel (ULSD) fuel has been integrated into the worldwide fuel infrastructure to help meet a variety of environmental regulations. However, desulfurization alters the properties of diesel fuel in ways that could potentially impact its biological stability. Fuel desulfurization might predispose ULSD to biodeterioration relative to sulfur-rich fuels and in marine systems accelerate rates of sulfate reduction, sulfide production, and carbon steel biocorrosion. To test such prospects, an inoculum from a seawater-compensated ballast tank was amended with fuel from the same ship or with refinery fractions of ULSD, low- (LSD), and high sulfur diesel (HSD) and monitored for sulfate depletion. The rates of sulfate removal in incubations amended with the refinery fuels were elevated relative to the fuel-unamended controls but statistically indistinguishable (∼50 µM SO4/day), but they were found to be roughly twice as fast (∼100 µM SO4/day) when the ship's own diesel was used as a source of carbon and energy. Thus, anaerobic hydrocarbon metabolism likely occurred in these incubations regardless of fuel sulfur content. Microbial community structure from each incubation was also largely independent of the fuel amendment type, based on molecular analysis of 16S rRNA sequences. Two other inocula known to catalyze anaerobic hydrocarbon metabolism showed no differences in fuel-associated sulfate reduction or methanogenesis rates between ULSD, LSD, and HSD. These findings suggest that the stability of diesel is independent of the fuel organosulfur compound status and reasons for the accelerated biocorrosion associated with the use of ULSD should be sought elsewhere.


Assuntos
Gasolina/análise , Consórcios Microbianos/genética , Água do Mar/microbiologia , Aço , Enxofre/análise , Anaerobiose , Biodegradação Ambiental , Corrosão , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , RNA Ribossômico 16S , Água do Mar/química , Navios , Sulfatos/química , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...