Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 211, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784924

RESUMO

Many applications of microbial synthetic biology, such as metabolic engineering and biocomputing, are increasing in design complexity. Implementing complex tasks in single populations can be a challenge because large genetic circuits can be burdensome and difficult to optimize. To overcome these limitations, microbial consortia can be engineered to distribute complex tasks among multiple populations. Recent studies have made substantial progress in programming microbial consortia for both basic understanding and potential applications. Microbial consortia have been designed through diverse strategies, including programming mutualistic interactions, using programmed population control to prevent overgrowth of individual populations, and spatial segregation to reduce competition. Here, we highlight the role of microbial consortia in the advances of metabolic engineering, biofilm production for engineered living materials, biocomputing, and biosensing. Additionally, we discuss the challenges for future research in microbial consortia.


Assuntos
Biofilmes , Técnicas Biossensoriais , Engenharia Metabólica/métodos , Consórcios Microbianos , Microbiologia Industrial , Biologia Sintética
2.
Nat Commun ; 10(1): 5404, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776339

RESUMO

Glycosylation plays important roles in cellular function and endows protein therapeutics with beneficial properties. However, constructing biosynthetic pathways to study and engineer precise glycan structures on proteins remains a bottleneck. Here, we report a modular, versatile cell-free platform for glycosylation pathway assembly by rapid in vitro mixing and expression (GlycoPRIME). In GlycoPRIME, glycosylation pathways are assembled by mixing-and-matching cell-free synthesized glycosyltransferases that can elaborate a glucose primer installed onto protein targets by an N-glycosyltransferase. We demonstrate GlycoPRIME by constructing 37 putative protein glycosylation pathways, creating 23 unique glycan motifs, 18 of which have not yet been synthesized on proteins. We use selected pathways to synthesize a protein vaccine candidate with an α-galactose adjuvant motif in a one-pot cell-free system and human antibody constant regions with minimal sialic acid motifs in glycoengineered Escherichia coli. We anticipate that these methods and pathways will facilitate glycoscience and make possible new glycoengineering applications.


Assuntos
Sistema Livre de Células/metabolismo , Engenharia de Proteínas/métodos , Proteínas/metabolismo , Antígenos CD/metabolismo , Escherichia coli/genética , Glicoproteínas/biossíntese , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Redes e Vias Metabólicas , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Proteínas/genética , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...