Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765685

RESUMO

This report details the first systematic screening of free-radical-produced methacrylate oligomer reaction mixtures as alternative vaccine adjuvant components to replace the current benchmark compound squalene, which is unsustainably sourced from shark livers. Homo-/co-oligomer mixtures of methyl, butyl, lauryl, and stearyl methacrylate were successfully synthesized using catalytic chain transfer control, where the use of microwave heating was shown to promote propagation over chain transfer. Controlling the mixture material properties allowed the correct viscosity to be achieved, enabling the mixtures to be effectively used in vaccine formulations. Emulsions of selected oligomers stimulated comparable cytokine levels to squalene emulsion when incubated with human whole blood and elicited an antigen-specific cellular immune response when administered with an inactivated influenza vaccine, indicating the potential utility of the compounds as vaccine adjuvant components. Furthermore, the oligomers' molecular sizes were demonstrated to be large enough to enable greater emulsion stability than squalene, especially at high temperatures, but are predicted to be small enough to allow for rapid clearance from the body.

2.
Front Bioeng Biotechnol ; 11: 1123477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860884

RESUMO

We report on the ring-opening polymerization of ɛ-caprolactone incorporated with a magnetic susceptible catalyst, FeCl3, via the use of microwave magnetic heating (HH) which primarily heats the bulk with a magnetic field (H-field) from an electromagnetic field (EMF). Such a process was compared to more commonly used heating methods, such as conventional heating (CH), i.e., oil bath, and microwave electric heating (EH), which is also referred to as microwave heating that primarily heats the bulk with an electric field (E-field). We identified that the catalyst is susceptible to both the E-field and H-field heating, and promoted the heating of the bulk. Which, we noticed such promotion was a lot more significant in the HH heating experiment. Further investigating the impact of such observed effects in the ROP of ɛ-caprolactone, we found that the HH experiments showed a more significant improvement in both the product Mwt and yield as the input power increased. However, when the catalyst concentration was reduced from 400:1 to 1600:1 (Monomer:Catalyst molar ratio), the observed differentiation in the Mwt and yield between the EH and the HH heating methods diminished, which we hypothesized to be due to the limited species available that were susceptible to microwave magnetic heating. But comparable product results between the HH and EH heating methods suggest that the HH heating method along with a magnetic susceptible catalyst could be an alternative solution to overcome the penetration depth problem associated with the EH heating methods. The cytotoxicity of the produced polymer was investigated to identify its potential application as biomaterials.

3.
Biomacromolecules ; 24(2): 576-591, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36599074

RESUMO

Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomonas aeruginosa. To achieve this, the potential of a range of recently reported, terpene-derived monomers to deliver biofilm resistance when polymerized was both predicted and ranked by the application of the α parameter to key features in their molecular structures. These monomers were derived from commercially available terpenes (i.e., α-pinene, ß-pinene, and carvone), and the prediction of the biofilm resistance properties of the resultant novel (meth)acrylate polymers was confirmed using a combination of high-throughput polymerization screening (in a microarray format) and in vitro testing. Furthermore, monomers, which both exhibited the highest predicted biofilm anti-biofilm behavior and required less than two synthetic stages to be generated, were scaled-up and successfully printed using an inkjet "valve-based" 3D printer. Also, these materials were used to produce polymeric surfactants that were successfully used in microfluidic processing to create microparticles that possessed bio-instructive surfaces. As part of the up-scaling process, a novel rearrangement was observed in a proposed single-step synthesis of α-terpinyl methacrylate via methacryloxylation, which resulted in isolation of an isobornyl-bornyl methacrylate monomer mixture, and the resultant copolymer was also shown to be bacterial attachment-resistant. As there has been great interest in the current literature upon the adoption of these novel terpene-based polymers as green replacements for petrochemical-derived plastics, these observations have significant potential to produce new bio-resistant coatings, packaging materials, fibers, medical devices, etc.


Assuntos
Biofilmes , Terpenos , Terpenos/farmacologia , Polímeros/química , Bactérias , Metacrilatos
4.
Sci Adv ; 9(4): eadd7474, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696507

RESUMO

Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming, encrustation, and host protein deposition, which are major challenges associated with preventing CAUTIs. After screening ~400 acrylate polymers, poly(tert-butyl cyclohexyl acrylate) was selected for its biofilm- and encrustation-resistant properties. When combined with the swarming inhibitory poly(2-hydroxy-3-phenoxypropyl acrylate), the copolymer retained the bioinstructive properties of the respective homopolymers when challenged with Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Urinary tract catheterization causes the release of host proteins that are exploited by pathogens to colonize catheters. After preconditioning the copolymer with urine collected from patients before and after catheterization, reduced host fibrinogen deposition was observed, and resistance to diverse uropathogens was maintained. These data highlight the potential of the copolymer as a urinary catheter coating for preventing CAUTIs.


Assuntos
Polímeros , Infecções Urinárias , Humanos , Cateterismo Urinário , Biofilmes , Cateteres Urinários/microbiologia , Infecções Urinárias/prevenção & controle , Infecções Urinárias/microbiologia , Bactérias , Escherichia coli
5.
Adv Mater ; : e2208364, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36440539

RESUMO

Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involved in the formation of granulation tissue, essential for effective wound healing. 315 different polymer surfaces are screened to identify candidates which actively drive fibroblasts toward either pro- or antiproliferative functional phenotypes. Fibroblast-instructive chemistries are identified, which are synthesized into surfactants to fabricate easy to administer microparticles for direct application to diabetic wounds. The pro-proliferative microfluidic derived particles are able to successfully promote neovascularization, granulation tissue formation, and wound closure after a single application to the wound bed. These active novel bio-instructive microparticles show great potential as a route to reducing the burden of chronic wounds.

6.
ACS Appl Mater Interfaces ; 13(36): 43290-43300, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464079

RESUMO

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimensional, surface-active materials were successfully used to control the surface properties of particles by forming a unimolecular deep layer on the surface of the particles via microfluidic processing. This strategy deliberately utilizes the surfactant to both create the stable particles and deliver a desired cell-instructive behavior. Therefore, these specifically designed, highly functional surfactants are critical to promoting a desired cell response. This library contained surfactants constructed from 20 molecularly distinct (meth)acrylic monomers, which had been pre-identified by HT screening to exhibit specific, varied, and desirable bacterial biofilm inhibitory responses. The surfactant's self-assembly properties in water were assessed by developing a novel, fully automated, HT method to determine the critical aggregation concentration. These values were used as the input data to a computational-based evaluation of the key molecular descriptors that dictated aggregation behavior. Thus, this combination of HT techniques facilitated the rapid design, generation, and evaluation of further novel, highly functional, cell-instructive surfaces by application of designed surfactants possessing complex molecular architectures.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Bibliotecas de Moléculas Pequenas/química , Tensoativos/química , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Metacrilatos/síntese química , Micelas , Modelos Químicos , Transição de Fase , Polietilenoglicóis/síntese química , Polimerização , Bibliotecas de Moléculas Pequenas/síntese química , Tensoativos/síntese química
7.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072733

RESUMO

Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polymeric surfactants. Here, micropipette manipulation methods were used to optimise the concentration of bespoke polymeric surfactants to produce biodegradable (poly(d,l-lactic acid) (PDLLA)) microparticles with unique, bio-instructive surface chemistries. The effect of these three-dimensional surfactants on the interfacial tension of the system was analysed. It was determined that to provide adequate stabilisation, a low level (0.1% (w/v)) of poly(vinyl acetate-co-alcohol) (PVA) was required. Optimisation of the PVA concentration was informed by micropipette manipulation. As a result, successful, monodisperse particles were produced that maintained the desired bio-instructive surface chemistry.


Assuntos
Portadores de Fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Álcool de Polivinil/química , Tensoativos/química , Materiais Biocompatíveis/química , Biodegradação Ambiental , Composição de Medicamentos/métodos , Ácido Láctico/química , Microfluídica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Ácido Poliglicólico/química , Solventes , Propriedades de Superfície , Tensão Superficial
8.
Adv Mater ; 31(49): e1903513, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31583791

RESUMO

Synthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical-device-centered infections. The incidence rate for catheter-associated urinary tract infections is between 3% and 7% for each day of use, which means that infection is inevitable when resident for sufficient time. The O'Neill Review on antimicrobial resistance estimates that, left unchecked, ten million people will die annually from drug-resistant infections by 2050. Development of biomaterials resistant to bacterial colonization can play an important role in reducing device-associated infections. However, rational design of new biomaterials is hindered by the lack of quantitative structure-activity relationships (QSARs). Here, the development of a predictive QSAR is reported for bacterial biofilm formation on a range of polymers, using calculated molecular descriptors of monomer units to discover and exemplify novel, biofilm-resistant (meth-)acrylate-based polymers. These predictions are validated successfully by the synthesis of new monomers which are polymerized to create coatings found to be resistant to biofilm formation by six different bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Polímeros/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Materiais Biocompatíveis/química , Incrustação Biológica/prevenção & controle , Humanos , Polímeros/química , Relação Estrutura-Atividade
9.
ACS Appl Mater Interfaces ; 10(1): 139-149, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29191009

RESUMO

Bacterial infections in healthcare settings are a frequent accompaniment to both routine procedures such as catheterization and surgical site interventions. Their impact is becoming even more marked as the numbers of medical devices that are used to manage chronic health conditions and improve quality of life increases. The resistance of pathogens to multiple antibiotics is also increasing, adding an additional layer of complexity to the problems of employing safe and effective medical procedures. One approach to reducing the rate of infections associated with implanted and indwelling medical devices is the use of polymers that resist the formation of bacterial biofilms. To significantly accelerate the discovery of such materials, we show how state of the art machine learning methods can generate quantitative predictions for the attachment of multiple pathogens to a large library of polymers in a single model for the first time. Such models facilitate design of polymers with very low pathogen attachment across different bacterial species that will be candidate materials for implantable or indwelling medical devices such as urinary catheters, cochlear implants, and pacemakers.


Assuntos
Pesquisa Biomédica , Antibacterianos , Biofilmes , Materiais Revestidos Biocompatíveis , Polímeros , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...