Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11353, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443184

RESUMO

While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.


Assuntos
Transtorno Autístico , Microbioma Gastrointestinal , Microbiota , Criança , Humanos , Microbioma Gastrointestinal/genética , Multiômica , RNA Ribossômico 16S/genética , Microbiota/genética
2.
Sci Rep ; 12(1): 17034, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220843

RESUMO

Observational studies have shown that the composition of the human gut microbiome in children diagnosed with Autism Spectrum Disorder (ASD) differs significantly from that of their neurotypical (NT) counterparts. Thus far, reported ASD-specific microbiome signatures have been inconsistent. To uncover reproducible signatures, we compiled 10 publicly available raw amplicon and metagenomic sequencing datasets alongside new data generated from an internal cohort (the largest ASD cohort to date), unified them with standardized pre-processing methods, and conducted a comprehensive meta-analysis of all taxa and variables detected across multiple studies. By screening metadata to test associations between the microbiome and 52 variables in multiple patient subsets and across multiple datasets, we determined that differentially abundant taxa in ASD versus NT children were dependent upon age, sex, and bowel function, thus marking these variables as potential confounders in case-control ASD studies. Several taxa, including the strains Bacteroides stercoris t__190463 and Clostridium M bolteae t__180407, and the species Granulicatella elegans and Massilioclostridium coli, exhibited differential abundance in ASD compared to NT children only after subjects with bowel dysfunction were removed. Adjusting for age, sex and bowel function resulted in adding or removing significantly differentially abundant taxa in ASD-diagnosed individuals, emphasizing the importance of collecting and controlling for these metadata. We have performed the largest (n = 690) and most comprehensive systematic analysis of ASD gut microbiome data to date. Our study demonstrated the importance of accounting for confounding variables when designing statistical comparative analyses of ASD- and NT-associated gut bacterial profiles. Mitigating these confounders identified robust microbial signatures across cohorts, signifying the importance of accounting for these factors in comparative analyses of ASD and NT-associated gut profiles. Such studies will advance the understanding of different patient groups to deliver appropriate therapeutics by identifying microbiome traits germane to the specific ASD phenotype.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Microbiota , Transtorno do Espectro Autista/genética , Bactérias/genética , Criança , Microbioma Gastrointestinal/genética , Humanos , Metagenoma
3.
Artif Intell Med ; 98: 77-86, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31521254

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, narrow interests, and deficits in social interaction and communication ability. An increasing emphasis is being placed on the development of innovative digital and mobile systems for their potential in therapeutic applications outside of clinical environments. Due to recent advances in the field of computer vision, various emotion classifiers have been developed, which have potential to play a significant role in mobile screening and therapy for developmental delays that impair emotion recognition and expression. However, these classifiers are trained on datasets of predominantly neurotypical adults and can sometimes fail to generalize to children with autism. The need to improve existing classifiers and develop new systems that overcome these limitations necessitates novel methods to crowdsource labeled emotion data from children. In this paper, we present a mobile charades-style game, Guess What?, from which we derive egocentric video with a high density of varied emotion from a 90-second game session. We then present a framework for semi-automatic labeled frame extraction from these videos using meta information from the game session coupled with classification confidence scores. Results show that 94%, 81%, 92%, and 56% of frames were automatically labeled correctly for categories disgust, neutral, surprise, and scared respectively, though performance for angry and happy did not improve significantly from the baseline.


Assuntos
Transtorno do Espectro Autista , Emoções , Expressão Facial , Reconhecimento Facial , Adulto , Criança , Crowdsourcing , Humanos , Masculino , Aplicativos Móveis , Jogos de Vídeo , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...