Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 10: 2670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824455

RESUMO

All organisms depend on symbiotic associations with bacteria for their success, yet how these interspecific interactions influence the population structure, ecology, and evolution of microbial symbionts is not well understood. Additionally, patterns of genetic variation in interacting species can reveal ecological traits that are important to gene flow and co-evolution. In this study, we define patterns of spatial and temporal genetic variation of a coral reef fish, Siphamia tubifer, and its luminous bacterial symbiont, Photobacterium mandapamensis in the Okinawa Islands, Japan. Using restriction site-associated sequencing (RAD-Seq) methods, we show that populations of the facultative light organ symbiont of S. tubifer exhibit genetic structure at fine spatial scales of tens of kilometers despite the absence of physical barriers to dispersal and in contrast to populations of the host fish. These results suggest that the host's behavioral ecology and environmental interactions between host and symbiont help to structure symbiont populations in the region, consequently fostering the specificity of the association between host generations. Our approach also revealed several symbiont genes that were divergent between host populations, including hfq and a homolog of varS, both of which play a role in host association in Vibrio cholerae. Overall, this study highlights the important role that a host animal can play in structuring the distribution of its bacterial symbiont, particularly in highly connected marine environments, thereby promoting specificity of the symbiosis between host generations.

2.
Genome Announc ; 4(5)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27660786

RESUMO

Histamine-producing bacteria (HPBs) have recently been identified from the marine environment. The identification and characterization of HPBs is important to developing effective mitigation strategies for scombrotoxin fish poisoning. We report here the draft genomes of seven histamine-producing and two non-histamine-producing marine Photobacterium strains.

3.
Genome Biol Evol ; 8(7): 2203-13, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27389687

RESUMO

The luminous bacterial symbionts of anomalopid flashlight fish are thought to be obligately dependent on their hosts for growth and share several aspects of genome evolution with unrelated obligate symbionts, including genome reduction. However, in contrast to most obligate bacteria, anomalopid symbionts have an active environmental phase that may be important for symbiont transmission. Here we investigated patterns of evolution between anomalopid symbionts compared with patterns in free-living relatives and unrelated obligate symbionts to determine if trends common to obligate symbionts are also found in anomalopid symbionts. Two symbionts, "Candidatus Photodesmus katoptron" and "Candidatus Photodesmus blepharus," have genomes that are highly similar in gene content and order, suggesting genome stasis similar to ancient obligate symbionts present in insect lineages. This genome stasis exists in spite of the symbiont's inferred ability to recombine, which is frequently lacking in obligate symbionts with stable genomes. Additionally, we used genome comparisons and tests of selection to infer which genes may be particularly important for the symbiont's ecology compared with relatives. In keeping with obligate dependence, substitution patterns suggest that most symbiont genes are experiencing relaxed purifying selection compared with relatives. However, genes involved in motility and carbon storage, which are likely to be used outside the host, appear to be under increased purifying selection. Two chemoreceptor chemotaxis genes are retained by both species and show high conservation with amino acid sensing genes, suggesting that the bacteria may actively seek out hosts using chemotaxis toward amino acids, which the symbionts are not able to synthesize.


Assuntos
Evolução Molecular , Peixes/microbiologia , Genoma Bacteriano , Simbiose , Vibrionaceae/genética , Animais , Instabilidade Genômica , Filogenia , Seleção Genética , Vibrionaceae/classificação , Vibrionaceae/patogenicidade
4.
Genome Announc ; 3(2)2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25931609

RESUMO

Histamine-producing bacteria are responsible for scombrotoxin (histamine) fish poisoning, a leading cause of fish poisoning in the United States. We report here the draft genome sequences of four histamine-producing (HP) Photobacterium kishitanii strains and nine HP Photobacterium angustum strains isolated from tuna.

5.
Environ Microbiol Rep ; 6(4): 331-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24992531

RESUMO

The luminous bacterial symbionts of anomalopid flashlight fishes, which appear to be obligately dependent on their hosts for growth, share several evolutionary patterns with unrelated obligate bacteria. However, only one flashlight fish symbiont species has been characterized in detail, and it is therefore not known if the bacteria from other anomalopid species are highly divergent (a pattern common to obligate symbionts). Unlike most obligate symbionts, the bacteria symbiotic with anomalopids are extracellular and spend time outside their hosts in the environment, from which they are thought to colonize new host generations. Environmental acquisition might decrease the likelihood of bacterial divergence between host species. We used phylogenetic analysis to determine the relatedness of symbionts from different anomalopid host species. The symbionts of hosts in the genus Photoblepharon were resolved as a new species, for which we propose the name 'Candidatus Photodesmus blepharus'. Furthermore, different genera of anomalopids were found to harbour different species of bacteria, even when the hosts overlapped in geographic range. This finding suggests that the divergence between bacterial species is not the result of geographic isolation. The specificity of symbionts to host genera is consistent with obligate dependence on the host and has implications for symbiont transmission.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cordados/microbiologia , Especificidade de Hospedeiro , Simbiose , Vibrionaceae/classificação , Vibrionaceae/isolamento & purificação , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Luminescência , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Environ Microbiol ; 16(8): 2611-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24118864

RESUMO

The majority of bacteria engaged in bioluminescent symbiosis are environmentally acquired and facultatively symbiotic. A few enigmatic bioluminescent symbionts have not been successfully cultured, which has led to speculation that they may be obligately dependent on their hosts. Here, we report the draft genome of the uncultured luminous symbiont of an anomalopid flashlight fish, 'Candidatus Photodesmus katoptron'. The genome of the anomalopid symbiont is reduced by 80% compared with close relatives and lacks almost all genes necessary for amino acid synthesis and for metabolism of energy sources other than glucose, supporting obligate dependence on the host for growth. 'Candidatus Photodesmus katoptron' is the first described obligate mutualistic symbiont of a vertebrate. Unlike most other obligate mutualists, the anomalopid symbiont genome has retained complete pathways for chemotaxis and motility as well as most genes involved in cell wall production, consistent with the hypothesis that these bacteria may be transmitted environmentally during an extra-host phase.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Peixes/microbiologia , Genoma Bacteriano , Filogenia , Vibrionaceae/genética , Animais , Evolução Biológica , Expressão Gênica , Tamanho do Genoma , Luminescência , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Simbiose/genética , Transcriptoma , Vibrionaceae/classificação
7.
Environ Microbiol Rep ; 4(4): 412-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760826

RESUMO

We report here the first instance of a complete replacement of vertically inherited luminescence genes by horizontally acquired homologues. Different strains of Photobacterium aquimaris contain homologues of the lux-rib genes that have a different evolutionary history. Strain BS1 from the Black Sea contains a vertically inherited lux-rib operon, which presumably arose in the ancestor of this species, whereas the type strain NBRC 104633(T) , from Sagami Bay, lacks the vertically inherited lux-rib operon and instead carries a complete and functional lux-rib operon acquired horizontally from a bacterium related to Photobacterium mandapamensis. The results indicate that the horizontal acquisition of the lux genes expanded the pan-genome of P. aquimaris, but it did not influence the phylogenetic divergence of this species.

8.
FEMS Microbiol Ecol ; 78(3): 463-72, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22066815

RESUMO

Luminous bacteria isolated by Martinus W. Beijerinck were sealed in glass ampoules in 1924 and 1925 and stored under the names Photobacterium phosphoreum and 'Photobacterium splendidum'. To determine if the stored cultures were viable and to assess their evolutionary relationship with currently recognized bacteria, portions of the ampoule contents were inoculated into culture medium. Growth and luminescence were evident after 13 days of incubation, indicating the presence of viable cells after more than 80 years of storage. The Beijerinck strains are apparently the oldest bacterial cultures to be revived from storage. Multi-locus sequence analysis, based on the 16S rRNA, gapA, gyrB, pyrH, recA, luxA, and luxB genes, revealed that the Beijerinck strains are distant from the type strains of P. phosphoreum, ATCC 11040(T), and Vibrio splendidus, ATCC 33125(T), and instead form an evolutionarily distinct clade of Vibrio. Newly isolated strains from coastal seawater in Norway, France, Uruguay, Mexico, and Japan grouped with the Beijerinck strains, indicating a global distribution for this new clade, designated as the beijerinckii clade. Strains of the beijerinckii clade exhibited little sequence variation for the seven genes and approximately 6300 nucleotides examined despite the geographic distances and the more than 80 years separating their isolation. Gram-negative bacteria therefore can survive for many decades in liquid storage, and in nature, they do not necessarily diverge rapidly over time.


Assuntos
Luminescência , Photobacterium/classificação , Filogenia , Vibrio/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , França , Genes Bacterianos , Variação Genética , Japão , México , Viabilidade Microbiana , Tipagem de Sequências Multilocus , Noruega , Photobacterium/genética , Photobacterium/isolamento & purificação , Água do Mar/microbiologia , Análise de Sequência de DNA , Uruguai , Vibrio/genética , Vibrio/isolamento & purificação
9.
Mol Phylogenet Evol ; 61(3): 834-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864694

RESUMO

Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron.


Assuntos
Bactérias/classificação , Bactérias/genética , Peixes/microbiologia , Luminescência , Simbiose/genética , Animais , Sequência de Bases , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genes Essenciais/genética , Funções Verossimilhança , Dados de Sequência Molecular , Óperon/genética , Filogenia
10.
J Morphol ; 272(8): 897-909, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21541984

RESUMO

Previous studies of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae) identified a ventral light organ, reflector, lens, duct, and a ventral diffuser extending from the throat to the caudal peduncle. The control and function of luminescence in this and other species of Siphamia, however, have not been defined. Morphological examination of fresh and preserved specimens identified additional components of the luminescence system involved in control and ventral emission of luminescence, including a retractable shutter over the ventral face of the light organ, contiguity of the ventral diffuser from the caudal peduncle to near the chin, and transparency of the bones and other tissues of the lower jaw. The shutter halves retract laterally, allowing the ventral release of light, and relax medially, blocking ventral light emission; topical application of norepinephrine to the exposed light organ resulted in retraction of the shutter halves, which suggests that operation of the shutter is under neuromuscular control. The extension of the diffuser to near the chin and transparency of the lower jaw allow a uniform emission of luminescence over the entire ventrum of the fish. The live aquarium-held fish were found to readily and consistently display ventral luminescence. At twilight, the fish left the protective association with their longspine sea urchin, Diadema setosum, and began to emit ventral luminescence and to feed on zooplankton. Ventral luminescence illuminated a zone below and around the fish, which typically swam close to the substrate. Shortly after complete darkness, the fish stopped feeding and emitting luminescence. These observations suggest that S. versicolor uses ventral luminescence to attract and feed on zooplankton from the reef benthos at twilight. Ventral luminescence may allow S. versicolor to exploit for feeding the gap at twilight in the presence of potential predators as the reef transitions from diurnally active to nocturnally active organisms.


Assuntos
Fenômenos Fisiológicos Bacterianos , Luminescência , Perciformes/anatomia & histologia , Animais , Recifes de Corais , Escuridão , Luz , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/microbiologia , Perciformes/microbiologia , Simbiose , Zooplâncton
11.
J Bacteriol ; 193(12): 3144-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478348

RESUMO

Photobacterium mandapamensis is one of three luminous Photobacterium species able to form species-specific bioluminescent symbioses with marine fishes. Here, we present the draft genome sequence of P. mandapamensis strain svers.1.1, the bioluminescent symbiont of the cardinal fish Siphamia versicolor, the first genome of a symbiotic, luminous Photobacterium species to be sequenced. Analysis of the sequence provides insight into differences between P. mandapamensis and other luminous and symbiotic bacteria in genes involved in quorum-sensing regulation of light production and establishment of symbiosis.


Assuntos
Peixes/microbiologia , Genoma Bacteriano , Photobacterium/genética , Photobacterium/metabolismo , Simbiose/fisiologia , Animais , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular
12.
FEMS Microbiol Ecol ; 75(2): 185-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21133957

RESUMO

Microbiological research in the days before specialized equipment, or even electricity, required a great deal of ingenuity. The revival of 90-year-old bioluminescent bacteria from Beijerinck's laboratory in Delft prompted a review of his work with these microorganisms and revealed their use in simple techniques for the investigation of, among other things, sugar metabolism in yeasts, oxygen generation and uptake and even the survival of microorganisms in liquid hydrogen. He used variant strains of bioluminescent bacteria in an attempt to study heredity and variation in biological systems and described one of the earliest examples of enzyme induction.


Assuntos
Bacteriologia/história , Photobacterium/metabolismo , História do Século XIX , História do Século XX , Luminescência , Photobacterium/classificação , Photobacterium/enzimologia , Photobacterium/fisiologia , Vibrio/classificação , Vibrio/enzimologia , Vibrio/metabolismo , Leveduras/metabolismo
13.
FEMS Microbiol Rev ; 35(2): 324-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20883503

RESUMO

Photobacterium comprises several species in Vibrionaceae, a large family of Gram-negative, facultatively aerobic, bacteria that commonly associate with marine animals. Members of the genus are widely distributed in the marine environment and occur in seawater, surfaces, and intestines of marine animals, marine sediments and saline lake water, and light organs of fish. Seven Photobacterium species are luminous via the activity of the lux genes, luxCDABEG. Much recent progress has been made on the phylogeny, genomics, and symbiosis of Photobacterium. Phylogenetic analysis demonstrates a robust separation between Photobacterium and its close relatives, Aliivibrio and Vibrio, and reveals the presence of two well-supported clades. Clade 1 contains luminous and symbiotic species and one species with no luminous members, and Clade 2 contains mostly nonluminous species. The genomes of Photobacterium are similar in size, structure, and organization to other members of Vibrionaceae, with two chromosomes of unequal size and multiple rrn operons. Many species of marine fish form bioluminescent symbioses with three Photobacterium species: Photobacterium kishitanii, Photobacterium leiognathi, and Photobacterium mandapamensis. These associations are highly, but not strictly species specific, and they do not exhibit symbiont-host codivergence. Environmental congruence instead of host selection might explain the patterns of symbiont-host affiliation observed from nature.


Assuntos
Genômica , Photobacterium/classificação , Photobacterium/fisiologia , Filogenia , Simbiose , Animais , Peixes/microbiologia , Peixes/fisiologia , Dados de Sequência Molecular , Photobacterium/genética , Photobacterium/isolamento & purificação , Microbiologia da Água
14.
Porto Alegre; Artmed; 12. ed; 2010. 1160 p.
Monografia em Português | LILACS, Coleciona SUS | ID: biblio-941458
16.
Syst Appl Microbiol ; 32(6): 379-86, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19481895

RESUMO

The "Vibrio fischeri species group" recently was reclassified as a new genus, Aliivibrio, comprising four species, Aliivibrio fischeri, Aliivibrio logei, Aliivibrio salmonicida, and Aliivibrio wodanis. Only limited phylogenetic analysis of strains within Aliivibrio has been carried out, however, and taxonomic ambiguity is evident within this group, especially for phenotypically unusual strains and certain strains isolated from bioluminescent symbioses. Therefore, to examine in depth the evolutionary relationships within Aliivibrio and redefine the host affiliations of symbiotic species, we examined several previously identified and newly isolated strains using phylogenetic analysis based on multiple independent loci, gapA, gyrB, pyrH, recA, rpoA, the luxABE region, and the 16S rRNA gene. The analysis resolved Aliivibrio as distinct from Vibrio, Photobacterium, and other genera of Vibrionaceae, and resolved A. fischeri, A. salmonicida, A. logei, and A. wodanis as distinct, well-supported clades. However, it also revealed that several previously reported strains are incorrectly identified and that substantial unrecognized diversity exists in this genus. Specifically, strain ATCC 33715 (Y-1) and several other strains having a yellow-shifted luminescence were not members of A. fischeri. Furthermore, no strain previously identified as A. logei grouped with the type strain (ATCC 29985(T)), and no bona-fide strain of A. logei was identified as a bioluminescent symbiont. Several additional strains identified previously as A. logei group instead with the type strain of A. wodanis (ATCC BAA-104(T)), or are members of a new clade. Two strongly supported clades were evident within A. fischeri, a phylogenetic structure that might reflect differences in the host species or differences in the ecological incidence of strains. The results of this study highlight the importance of basing taxonomic conclusions on examination of type strains.


Assuntos
Proteínas de Bactérias/genética , Genes de RNAr/genética , Variação Genética , Filogenia , Análise de Sequência de DNA , Vibrionaceae/classificação , Técnicas de Tipagem Bacteriana , Evolução Molecular , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Especificidade da Espécie , Simbiose , Vibrionaceae/genética
18.
Appl Environ Microbiol ; 74(24): 7471-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18978090

RESUMO

Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore apparently precedes acquisition of the symbiotic bacteria. Furthermore, bacterial populations in larval light organs near inception of the symbiosis are genetically diverse, like those of adult fish.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Perciformes/microbiologia , Perciformes/fisiologia , Photobacterium/isolamento & purificação , Photobacterium/fisiologia , Simbiose , Estruturas Animais/microbiologia , Estruturas Animais/ultraestrutura , Animais , Proteínas de Bactérias/genética , Impressões Digitais de DNA , DNA Bacteriano/genética , Larva/microbiologia , Larva/fisiologia , Larva/ultraestrutura , Luminescência , Microscopia Eletrônica de Transmissão , Photobacterium/metabolismo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Vibrio/isolamento & purificação , Vibrio/metabolismo , Vibrio/fisiologia
19.
J Bacteriol ; 190(10): 3494-504, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18359809

RESUMO

Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2) operon of P. leiognathi. In none of these cases of apparent HGT, however, did acquisition of the lux genes correlate with phylogenetic divergence of the recipient strain from other members of its species. The results indicate that horizontal transfer of the lux genes in nature is rare and that horizontal acquisition of the lux genes apparently has not contributed to speciation in recipient taxa.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Oxirredutases/genética , Proteínas Repressoras/genética , Transativadores/genética , Vibrionaceae/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Medições Luminescentes , Família Multigênica , Óperon , Filogenia , Vibrionaceae/enzimologia , Vibrionaceae/fisiologia
20.
Int J Syst Evol Microbiol ; 57(Pt 12): 2823-2829, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18048732

RESUMO

Four closely related species, Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis, form a clade within the family Vibrionaceae; the taxonomic status and phylogenetic position of this clade have remained ambiguous for many years. To resolve this ambiguity, we tested these species against other species of the Vibrionaceae for phylogenetic and phenotypic differences. Sequence identities for the 16S rRNA gene were > or =97.4 % among members of the V. fischeri group, but were < or =95.5 % for members of this group in comparison with type species of other genera of the Vibrionaceae (i.e. Photobacterium and Vibrio, with which they overlap in G+C content, and Enterovibrio, Grimontia and Salinivibrio, with which they do not overlap in G+C content). Combined analysis of the recA, rpoA, pyrH, gyrB and 16S rRNA gene sequences revealed that the species of the V. fischeri group form a tightly clustered clade, distinct from these other genera. Furthermore, phenotypic traits differentiated the V. fischeri group from other genera of the Vibrionaceae, and a panel of 13 biochemical tests discriminated members of the V. fischeri group from type strains of Photobacterium and Vibrio. These results indicate that the four species of the V. fischeri group represent a lineage within the Vibrionaceae that is distinct from other genera. We therefore propose their reclassification in a new genus, Aliivibrio gen. nov. Aliivibrio is composed of four species: Aliivibrio fischeri comb. nov. (the type species) (type strain ATCC 7744(T) =CAIM 329(T) =CCUG 13450(T) =CIP 103206(T) =DSM 507(T) =LMG 4414(T) =NCIMB 1281(T)), Aliivibrio logei comb. nov. (type strain ATCC 29985(T) =CCUG 20283(T) =CIP 104991(T) =NCIMB 2252(T)), Aliivibrio salmonicida comb. nov. (type strain ATCC 43839(T) =CIP 103166(T) =LMG 14010(T) =NCIMB 2262(T)) and Aliivibrio wodanis comb. nov. (type strain ATCC BAA-104(T) =NCIMB 13582(T) =LMG 24053(T)).


Assuntos
Vibrio/classificação , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/genética , Genes de RNAr , Dados de Sequência Molecular , Núcleosídeo-Fosfato Quinase/genética , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Vibrio/genética , Vibrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...