Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 196: 16-21, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21999984

RESUMO

Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.


Assuntos
Desinfecção/métodos , Escherichia coli/efeitos da radiação , Luz Solar , Raios Ultravioleta , Microbiologia da Água/normas , Purificação da Água/métodos , Desinfecção/instrumentação , Desenho de Equipamento , Escherichia coli/crescimento & desenvolvimento , Fatores de Tempo , Purificação da Água/instrumentação
2.
Chemosphere ; 85(7): 1160-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21982840

RESUMO

Solar disinfection (SODIS) of Escherichia coli suspensions in low-density polyethylene bag reactors was investigated as a low-cost disinfection method suitable for application in developing countries. The efficiency of a range of SODIS reactor configurations was examined (single skin (SS), double skin, black-backed single skin, silver-backed single skin (SBSS) and composite-backed single skin) using E. coli suspended in model and real surface water. Titanium dioxide was added to the reactors to improve the efficiency of the SODIS process. The effect of turbidity was also assessed. In addition to viable counts, E. coli injury was characterised through spread-plate analysis using selective and non-selective media. The optimal reactor configuration was determined to be the SBSS bag (t(50)=9.0min) demonstrating the importance of UVA photons, as opposed to infrared in the SODIS disinfection mechanism. Complete inactivation (6.5-log) was achieved in the presence of turbidity (50NTU) using the SBSS bag within 180min simulated solar exposure. The addition of titanium dioxide (0.025gL(-1)) significantly enhanced E. coli inactivation in the SS reactor, with 6-log inactivation observed within 90min simulated solar exposure. During the early stages of both SODIS and photocatalytic disinfection, injured E. coli were detected; however, irreversible injury was caused and re-growth was not observed. Experiments under solar conditions were undertaken with total inactivation (6.5-log) observed in the SS reactor within 240min, incomplete inactivation (4-log) was observed in SODIS bottles exposed to the same solar conditions.


Assuntos
Desinfecção/métodos , Escherichia coli/efeitos da radiação , Polietileno/química , Luz Solar , Catálise , Água Potável/microbiologia , Viabilidade Microbiana/efeitos da radiação , Titânio/química , Purificação da Água
3.
J Hazard Mater ; 191(1-3): 56-61, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21601355

RESUMO

The aim of this study is to assess in vitro cytotoxic effects of titania nanostructures and carbon nanotubes (CNTs) by exposing A549 lung epithelial cell line to these materials. Titania nanotubes (TiNTs) were grown by hydrothermal treatment of TiO(2) nanoparticles, followed by annealing them at 400°C. The titania nanostructures obtained on annealing (mixture of nanotubes and nanorods) were hollow and open ended, containing 3-5 layers of titania sheets, with an internal diameter ∼3-5 nm and external diameter ∼8-10 nm, and a specific surface area of 265 m(2)/g. As-supplied single walled (SWCNTs) and microwave plasma enhanced chemical vapour deposition (MPCVD) grown multi walled carbon nanotubes (MWCNTs) were used in this study. The lengths and diameters of the SWCNTs were 5-10nm and 0.5-3 nm respectively. The lengths and diameters of the MWCNTs were 25-30 µm and 10-30 nm respectively. The cell viability was evaluated using the MTT (3-(4,-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium) assay. No significant cytotoxic effects of titania nanostructures were observed over a period of a week of testing time, while the presence of CNTs in some cases demonstrated significant cytotoxic effects. Finally, possible reason of cytotoxicity is discussed in the light of microstructures of materials.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas , Nanotubos de Carbono , Titânio/toxicidade , Células Cultivadas , Cristalografia por Raios X , Células Epiteliais/efeitos dos fármacos , Humanos , Técnicas In Vitro , Pulmão/citologia , Microscopia Eletrônica de Varredura
4.
J Water Health ; 8(1): 83-91, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20009250

RESUMO

Control of waterborne gastrointestinal parasites represents a major concern to water industries worldwide. In developed countries, pathogens in drinking water supplies are normally removed by sand filtration followed by chemical disinfection. Cryptosporidium spp. are generally resistant to common disinfection techniques and alternative control strategies are being sought. In the current study, the photocatalytic inactivation of C. parvum oocysts was shown to occur in buffer solution (78.4% after 180 min) and surface water (73.7% after 180 min). Viability was assessed by dye exclusion, excystation, direct examination of oocysts and a novel gene expression assay based on lactate dehydrogenase 1 (LDH1) expression levels. Collectively, this confirmed the inactivation of oocysts and scanning electron microscopy (SEM) confirmed cleavage at the suture line of oocyst cell walls, revealing large numbers of empty (ghost) cells after exposure to photocatalytic treatment.


Assuntos
Cryptosporidium parvum/efeitos da radiação , Nanoestruturas , Fotólise , Titânio , Purificação da Água/métodos , Desinfecção/instrumentação , Oocistos/efeitos da radiação , RNA de Protozoário , Purificação da Água/instrumentação
5.
J Nanosci Nanotechnol ; 9(7): 4215-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19916433

RESUMO

Aligned titanium dioxide nanotubes may be grown on the surface of titanium metal by electrochemical oxidation in the presence of fluoride ion. There are a number of salient parameters that have been reported to affect the nanotube growth i.e., the nature, pH and concentration of the fluoride electrolyte, the cell potential and process time for anodisation. Furthermore, it has been reported that the nanotubes as grown are amorphous and can be converted to a mixture of anatase and rutile crystalline phases by heat treatment at elevated temperatures. There have been no studies reported investigating the effect of surface roughness of the parent titanium metal on nanotube growth. In this work the electrochemical growth of titanium oxide nanotubes on titanium foil was investigated using an ammonium fluoride/ammonium sulphate electrolyte. The results confirm that the anodisation potential controls pore diameter. The surface coverage of nanotubes was dependent on the surface roughness of the parent titanium metal. AFM measurements on untreated titanium foil showed relatively high microscale roughness and low nanoscale roughness. SEM analysis of these samples showed nanotube growth to be confined to depressions or valleys on the surface and the nanotubes were of uniform pore diameter. Mechanically polishing the surface of the parent titanium decreased the microscale roughness and increased the nanoscale roughness which, resulted in more uniform surface coverage. However, this led to an increased variation in pore diameter and shape of the nanotubes. XRD was used to determine crystal structure before and after annealing at 460 degrees C.

6.
Artigo em Inglês | MEDLINE | ID: mdl-17946403

RESUMO

There is a need for accurate, reliable methods of detecting bacteria for a range of applications. One organism that is commonly found in urinary catheter infections is Staphylococcus epidermidis. Current methods to determine the presence of an infection require the removal of catheters. An alternative approach may be the use of in vivo sensing for bacterial/biofilm detection. This work investigates electrical impedance spectroscopy to detect the growth of Staphylococcus epidermidis RP62A on gold electrodes fabricated on a flexible substrate. Impedance spectra measured during biofilm formation on the electrode surface showed an increase in charge transfer resistance (RCT) with time.


Assuntos
Técnicas Biossensoriais/métodos , Contagem de Colônia Microbiana/métodos , Eletroquímica/métodos , Análise Espectral/métodos , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/fisiologia , Técnicas Biossensoriais/instrumentação , Proliferação de Células , Contagem de Colônia Microbiana/instrumentação , Impedância Elétrica , Eletroquímica/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espectral/instrumentação , Staphylococcus epidermidis/citologia
7.
J Appl Toxicol ; 24(5): 395-400, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15478172

RESUMO

p-Nitrophenol is a common structural unit of many pesticides and was chosen as a model compound to monitor genotoxicity during photocatalytic degradation. The genotoxicity of p-nitrophenol (PNP) and its breakdown products was measured using a bioluminescent bacterial bioassay, Vitotox. The genotoxic potential decreased with the concomitant photocatalytic degradation of the parent PNP concentration. The rate of genotoxicity reduction was slower than the rate of removal of the parent PNP, due to the formation of genotoxic by-products. After 6 h of photocatalytic treatment the total genotoxicity was removed. These results indicate that bioassays can be used as a simple and highly sensitive method for monitoring the general toxicity of chemical pollutants before, during and after photocatalytic treatment or other destructive processes.


Assuntos
Monitoramento Ambiental/métodos , Escherichia coli/genética , Nitrofenóis/toxicidade , Poluentes da Água/toxicidade , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Bioensaio/métodos , Catálise , Medições Luminescentes , Nitrofenóis/análise , Organismos Geneticamente Modificados , Fotoquímica , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...