Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 112: 59-66, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38744022

RESUMO

BACKGROUND: Transhumeral (TH) limb loss leads to loss of body mass and reduced shoulder range of motion. Despite most owning a prosthesis, prosthesis abandonment is common. The consequence of TH limb loss and prosthesis use and disuse during gait may be compensation in the upper body, contributing to back pain or injury. Understanding the impact of not wearing a TH prosthesis on upper body asymmetries and spatial-temporal aspects of gait will inform how TH prosthesis use and disuse affects the body. RESEARCH QUESTION: Does TH limb loss alter upper body asymmetries and spatial-temporal parameters during gait when wearing and not wearing a prosthesis compared to able-bodied controls? METHODS: Eight male TH limb loss participants and eight male control participants completed three gait trials at self-selected speeds. The TH limb loss group performed trials with and without their prosthesis. Arm swing, trunk angular displacement, trunk-pelvis moment, and spatial-temporal aspects were compared using non-parametric statistical analyses. RESULTS: Both TH walking conditions showed greater arm swing in the intact limb compared to the residual (p≤0.001), resulting in increased asymmetry compared to the control group (p≤0.001). Without the prosthesis, there was less trunk flexion and lateral flexion compared to the control group (p≤0.001). Maximum moments between the trunk and pelvis were higher in the TH group than the control group (p≤0.05). Spatial-temporal parameters of gait did not differ between the control group and either TH limb loss condition. SIGNIFICANCE: Prosthesis use affects upper body kinematics and kinetics, but does not significantly impact spatial-temporal aspects of gait, suggesting these are compensatory actions. Wearing a prosthesis helps achieve more normative upper body kinematics and kinetics than not wearing a prosthesis, which may help limit back pain. These findings emphasize the importance of encouraging at least passive use of prostheses for individuals with TH limb loss.

2.
J Biomech ; 168: 112075, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631186

RESUMO

Whole-body angular momentum (WBAM) represents the cancellations of angular momenta that are produced during a reciprocal gait pattern. WBAM is sensitive to small changes and is used to compare dynamic gait patterns under different walking conditions. Study designs and the normalization techniques used to define WBAM vary and make comparisons between studies difficult. To address this problem, WBAM about each anatomical axis of rotation from a healthy control population during normal gait were investigated within four metrics: 1) range of WBAM, 2) integrated WBAM, 3) statistical parametric mapping (SPM), and 4) principal component analysis (PCA). These data were studied as a function of walking speed and normalization. Normalization techniques included: 1) no normalization, 2) normalization by height, body mass and walking speed, and 3) normalization by height, body mass and a scalar number, gravity×height, that is independent of walking velocity. Significant results were obtained as a function of walking speed regardless of normalization technique. However, the interpretation of significance within each metric was dependent on the normalization technique. Method 3 was the most robust technique as the differences were not altered from the expected relationships within the raw data. Method 2 actually inverted the expected relationship in WBAM amplitude as a function of walking speed, which skewed the results and their interpretation. Overall, SPM and PCA statistical methods provided better insights into differences that may be important. However, depending on the normalization technique used, caution is advised when interpreting significant findings when comparing participants with disparate walking speeds.


Assuntos
Marcha , Velocidade de Caminhada , Humanos , Velocidade de Caminhada/fisiologia , Masculino , Marcha/fisiologia , Feminino , Adulto , Caminhada/fisiologia , Fenômenos Biomecânicos , Análise de Componente Principal , Adulto Jovem
3.
J Biomech ; 166: 112054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513398

RESUMO

The objective of this study was to define targeted reaching performance without visual information for transhumeral (TH) prosthesis users, establishing baseline information about extended physiological proprioception (EPP) in this population. Subjects completed a seated proprioceptive targeting task under simultaneous motion capture, using their prosthesis and intact limb. Eight male subjects, median age of 58 years (range 29-77 years), were selected from an ongoing screening study to participate. Five subjects had a left-side TH amputation, and three a right-side TH amputation. Median time since amputation was 9 years (range 3-54 years). Four subjects used a body-powered prosthetic hook, three a myoelectric hand, and one a myoelectric hook. The outcome measures were precision and accuracy, motion of the targeting hand, and joint angular displacement. Subjects demonstrated better precision when targeting with their intact limb compared to targeting with their prosthesis, 1.9 cm2 (0.8-3.0) v. 7.1 cm2 (1.3-12.8), respectively, p = 0.008. Subjects achieved a more direct reach path ratio when targeting with the intact limb compared to with the prosthesis, 1.2 (1.1-1.3) v. 1.3 (1.3-1.4), respectively, p = 0.039 The acceleration, deceleration, and corrective phase durations were consistent between conditions. Trunk angular displacement increased in flexion, lateral flexion, and axial rotation while shoulder flexion decreased when subjects targeted with their prosthesis compared to the intact limb. The differences in targeting precision, reach patio ratio, and joint angular displacements while completing the targeting task indicate diminished EPP. These findings establish baseline information about EPP in TH prosthesis users for comparison as novel prosthesis suspension systems become more available to be tested.


Assuntos
Membros Artificiais , Extremidade Superior , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Implantação de Prótese , Amputação Cirúrgica , Propriocepção , Desenho de Prótese
4.
Arch Rehabil Res Clin Transl ; 4(3): 100202, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36123975

RESUMO

Objective: To develop and test an assessment measuring extended physiological proprioception (EPP). EPP is a learned skill that allows one to extend proprioception to an external tool, which is important for controlling prosthetic devices. The current study examines the ability of this assessment to measure EPP in a nonamputee population for translation into the affected population. Design: Measuring precision and accuracy of an upper extremity (UE) proprioceptive targeting task assessment. Participants completed 2 sessions of a targeting task while seated at a table. The targeting was completed with the dominant and nondominant hand and with eyes open and eyes closed during the task. Participants completed 2 sessions of the clinical test with a 1-week washout period to simulate reasonable time between clinical visits. Setting: Research laboratory. Participants: Twenty right-handed participants (N=20) with no neurologic or orthopedic deficits that would interfere with proprioception, median age of 25 years (range, 19-33 years), completed the assessment (10 men, 10 women). Interventions: Not applicable. Main Outcome Measures: Precision (consistency in targeting) and accuracy (distance between the intended target and participant result) in UE targeting task using EPP; test-retest repeatability between sessions. Results: Both precision and accuracy were significantly decreased in the eyes-closed condition compared with the eyes-open condition regardless of targeting with dominant or nondominant hand (all P<.001). In the eyes-open condition, there was a dominance effect relating to the accuracy; however, in the eyes-closed condition, accuracy between dominant and nondominant hands was statistically equivalent. Based on minimum detectable change with 95% confidence, there was no change in either metric between the first and second sessions. Conclusions: The results of this study support the feasibility of using this assessment to measure EPP-based on the definition of EPP as a learned skill that indicates control over an external, simple tool-because they demonstrate reliance on proprioception in the eyes-closed condition, symmetry in proprioceptive accuracy between hands for within-participant control, and test-retest reliability for longitudinal measurements. The results also establish normative values for this assessment in young, healthy adults. Further research is required in a clinical population to evaluate the UE proprioceptive targeting task assessment further and collect objective data on EPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...