Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0292645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113233

RESUMO

Previous work indicated that the incidence of travellers' diarrhoea (TD) is higher in soldiers of British origin, when compared to soldiers of Nepalese descent (Gurkhas). We hypothesise that the composition of the gut microbiota may be a contributing factor in the risk of developing TD in soldiers of British origin. This study aimed to characterise the gut microbial composition of Gurkha and non-Gurkha soldiers of the British Army. Recruitment of 38 soldiers (n = 22 Gurkhas, n = 16 non-Gurkhas) and subsequent stool collection, enabled shotgun metagenomic sequencing-based analysis of the gut microbiota. The microbiota of Gurkhas had significantly (P < 0.05) lower diversity, for both Shannon and Simpson diversity indices, using species level markers than the gut microbiota of non-Gurkha soldiers. Non-metric Multidimensional Scaling (NMDS) of the Bray-Curtis distance matrix revealed a significant difference in the composition of the gut microbiota between Gurkhas and non-Gurkha soldiers, at both the species level (P = 0.0178) and the genus level (P = 0.0483). We found three genera and eight species that were significantly enriched in the non-Gurkha group and one genus (Haemophilus) and one species (Haemophilus parainfluenzae) which were enriched in the Gurkha group. The difference in the microbiota composition between Gurkha soldiers and soldiers of British origin may contribute to higher colonization resistance against diarrhoeal pathogens in the former group. Our findings may enable further studies into interventions that modulate the gut microbiota of soldiers to prevent TD during deployment.


Assuntos
Microbioma Gastrointestinal , Militares , Humanos , População Branca , Povo Asiático , Metagenoma
2.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970873

RESUMO

The repeated emergence of multi-drug-resistant (MDR) Escherichia coli clones is a threat to public health globally. In recent work, drug-resistant E. coli were shown to be capable of displacing commensal E. coli in the human gut. Given the rapid colonization observed in travel studies, it is possible that the presence of a type VI secretion system (T6SS) may be responsible for the rapid competitive advantage of drug-resistant E. coli clones. We employed large-scale genomic approaches to investigate this hypothesis. First, we searched for T6SS genes across a curated dataset of over 20 000 genomes representing the full phylogenetic diversity of E. coli. This revealed large, non-phylogenetic variation in the presence of T6SS genes. No association was found between T6SS gene carriage and MDR lineages. However, multiple clades containing MDR clones have lost essential structural T6SS genes. We characterized the T6SS loci of ST410 and ST131 and identified specific recombination and insertion events responsible for the parallel loss of essential T6SS genes in two MDR clones.


Assuntos
Infecções por Escherichia coli , Sistemas de Secreção Tipo VI , Humanos , Escherichia coli/genética , Sistemas de Secreção Tipo VI/genética , Infecções por Escherichia coli/genética , Filogenia , Genômica
3.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37171860

RESUMO

Increased colonization by antimicrobial-resistant organisms is closely associated with international travel. This study investigated the diversity of mobile genetic elements involved with antimicrobial resistance (AMR) gene carriage in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli that colonized travellers to Laos. Long-read sequencing was used to reconstruct complete plasmid sequences from 48 isolates obtained from the daily stool samples of 23 travellers over a 3 week period. This method revealed a collection of 105 distinct plasmids, 38.1 % (n=40) of which carried AMR genes. The plasmids in this population were diverse, mostly unreported and included 38 replicon types, with F-type plasmids (n=23) the most prevalent amongst those carrying AMR genes. Fine-scale analysis of all plasmids identified numerous AMR gene contexts and emphasized the importance of IS elements, specifically members of the IS6/IS26 family, in the evolution of complex multidrug resistance regions. We found a concerning convergence of ESBL and colistin resistance determinants, with three plasmids from two different F-type lineages carrying bla CTX-M and mcr genes. The extensive diversity seen here highlights the worrying probability that stable new vehicles for AMR will evolve in E. coli populations that can disseminate internationally through travel networks.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Laos , beta-Lactamases/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética
4.
mSystems ; 8(1): e0071322, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36722946

RESUMO

Multidrug resistance (MDR) plasmids drive the spread of antibiotic resistance between bacterial lineages. The immediate impact of MDR plasmid acquisition on fitness and cellular processes varies among bacterial lineages, but how the evolutionary processes enabling the genomic integration of MDR plasmids vary is less well understood, particularly in clinical pathogens. Using diverse Escherichia coli lineages experimentally evolved for ~700 generations, we show that the evolutionary response to gaining the MDR plasmid pLL35 was dominated by chromosomal mutations affecting metabolic and regulatory functions, with both strain-specific and shared mutational targets. The expression of several of these functions, such as anaerobic metabolism, is known to be altered upon acquisition of pLL35. Interactions with resident mobile genetic elements, notably several IS-elements, potentiated parallel mutations, including insertions upstream of hns that were associated with its upregulation and the downregulation of the plasmid-encoded extended-spectrum beta-lactamase gene. Plasmid parallel mutations targeted conjugation-related genes, whose expression was also commonly downregulated in evolved clones. Beyond their role in horizontal gene transfer, plasmids can be an important selective force shaping the evolution of bacterial chromosomes and core cellular functions. IMPORTANCE Plasmids drive the spread of antimicrobial resistance genes between bacterial genomes. However, the evolutionary processes allowing plasmids to be assimilated by diverse bacterial genomes are poorly understood, especially in clinical pathogens. Using experimental evolution with diverse E. coli lineages and a clinical multidrug resistance plasmid, we show that although plasmids drove unique evolutionary paths per lineage, there was a surprising degree of convergence in the functions targeted by mutations across lineages, dominated by metabolic functions. Remarkably, these same metabolic functions show higher evolutionary rates in MDR-lineages in nature and in some cases, like anaerobic metabolism, their expression is directly manipulated by the plasmid. Interactions with other mobile elements resident in the genomes accelerated adaptation by disrupting genes and regulatory sequences that they inserted into. Beyond their role in horizontal gene transfer, plasmids are an important selective force driving the evolution of bacterial genomes and core cellular functions.


Assuntos
Escherichia coli , Genoma Bacteriano , Escherichia coli/genética , Plasmídeos/genética , Genoma Bacteriano/genética , Resistência a Múltiplos Medicamentos , Genômica
5.
Microb Genom ; 8(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696727

RESUMO

In some neonatal units, the screening of isolates for antimicrobial-resistant organisms is a matter of routine, with theoretical benefits including the prevention or early detection of outbreaks. This study sought to use whole-genome sequencing (WGS) retrospectively to characterize the genomic epidemiology of Gram-negative organisms obtained from a screening programme in a 32-bed unit providing intensive, high-dependency and special care at City Hospital, Birmingham, UK, identifying occult transmission events and clinically important antimicrobial-resistance (AMR) genes. WGS was performed for 155 isolates collected from rectal and umbilical screening swabs over a 2 month period from 44 individual neonates. Genomic epidemiological analysis showed possible transmission events involving Escherichia coli, Enterobacter cloacae, Klebsiella oxytoca and Klebsiella pneumoniae not detected by routine screening, with eight putative clusters involving different individuals identified. Within phylogenetic clusters, the relatedness of organisms - as determined by the abundance of SNPs - varied widely, indicating that a variety of transmission routes may be implicated. While clinically important AMR genes were not present in the putative transmission clusters, our observation of suspected interspecies horizontal transfer of blaCTX-M-15 within individuals highlights the potential for their spread between organisms as well as individuals in this environment, with implications for surveillance. Our data show that WGS may reveal occult Gram-negative transmission events, demonstrating the potential of sequencing-based surveillance systems for nosocomial pathogens. Challenges remain in understanding how to utilize WGS surveillance to maximum effect in real-world settings.


Assuntos
Genoma Bacteriano , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos , Humanos , Recém-Nascido , Klebsiella pneumoniae/genética , Filogenia , Estudos Retrospectivos , beta-Lactamases/genética
6.
J Clin Microbiol ; 60(4): e0240821, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35369709

RESUMO

Genome sequencing is a powerful tool for identifying SARS-CoV-2 variant lineages; however, there can be limitations due to sequence dropout when used to identify specific key mutations. Recently, ThermoFisher Scientific has developed genotyping assays to help bridge the gap between testing capacity and sequencing capability to generate real-time genotyping results based on specific variants. Over a 6-week period during the months of April and May 2021, we set out to assess the ThermoFisher TaqMan mutation panel genotyping assay, initially for three mutations of concern and then for an additional two mutations of concern, against SARS-CoV-2-positive clinical samples and the corresponding COVID-19 Genomics UK Consortium (COG-UK) sequencing data. We demonstrate that genotyping is a powerful in-depth technique for identifying specific mutations, is an excellent complement to genome sequencing, and has real clinical health value potential, allowing laboratories to report and take action on variants of concern much more quickly.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Mutação , SARS-CoV-2/genética
7.
Lancet Microbe ; 2(4): e151-e158, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33821248

RESUMO

BACKGROUND: Antimicrobial resistance is highly prevalent in low-income and middle-income countries. International travel contributes substantially to the global spread of intestinal multidrug-resistant Gram-negative bacteria. Hundreds of millions of annual visitors to low-income and middle-income countries are all exposed to intestinal multidrug-resistant Gram-negative bacteria resulting in 30-70% of them being colonised at their return. The colonisation process in high-exposure environments is poorly documented because data have only been derived from before travel and after travel sampling. We characterised colonisation dynamics by exploring daily stool samples while visiting a low-income and middle-income countries. METHODS: In this prospective, daily, real-time sampling study 20 European visitors to Laos volunteered to provide daily stool samples and completed daily questionnaires for 22 days. Samples were initially assessed at Mahosot Hospital, Vientiane, Laos, for acquisition of extended-spectrum ß-lactamase-producing (ESBL) Gram-negative bacteria followed by whole-genome sequencing of isolates at MicrobesNG, University of Birmingham, Birmingham, UK. The primary outcome of the study was to obtain data on the dynamics of intestinal multidrug-resistant bacteria acquisition. FINDINGS: Between Sept 18 and Sept 20, 2015, 23 volunteers were recruited, of whom 20 (87%) European volunteers were included in the final study population. Although colonisation rates were 70% at the end of the study, daily sampling revealed that all participants had acquired ESBL-producing Gram-negative bacteria at some point during the study period; the colonisation status varied day by day. Whole-genome sequencing analysis ascribed the transient pattern of colonisation to sequential acquisition of new strains, resulting in a loss of detectable colonisation by the initial multidrug-resistant Gram-negative strains. 19 (95%) participants acquired two to seven strains. Of the 83 unique strains identified (53 Escherichia coli, 10 Klebsiella spp, and 20 other ESBL-producing Gram-negative bacteria), some were shared by as many as four (20%) participants. INTERPRETATION: To our knowledge, this is the first study to characterise in real-time the dynamics of acquiring multidrug-resistant Gram-negative bacterial colonisation during travel. Our data show multiple transient colonisation events indicative of constant microbial competition and suggest that travellers are exposed to a greater burden of multidrug-resistant bacteria than previously thought. The data emphasise the need for preventing travellers' diarrhoea and limiting antibiotic use, addressing the two major factors predisposing colonisation. FUNDING: The Finnish Governmental Subsidy for Health Science Research, The Scandinavian Society for Antimicrobial Chemotherapy, the Sigrid Jusélius Foundation, Biotechnology and Biological Sciences Research Council; Wellcome Trust, Medical Research Council; The Royal Society; Joint Programming Initiative on Antimicrobial Resistance, and European Research Council.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Estudos Prospectivos , Estudos de Amostragem
8.
mSphere ; 6(2)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692198

RESUMO

Tuberculosis (TB) is responsible for millions of deaths annually. More effective vaccines and new antituberculous drugs are essential to control the disease. Numerous genomic studies have advanced our knowledge about M. tuberculosis drug resistance, population structure, and transmission patterns. At the same time, reverse vaccinology and drug discovery pipelines have identified potential immunogenic vaccine candidates or drug targets. However, a better understanding of the sequence variation of all the M. tuberculosis genes on a large scale could aid in the identification of new vaccine and drug targets. Achieving this was the focus of the current study. Genome sequence data were obtained from online public sources covering seven M. tuberculosis lineages. A total of 8,535 genome sequences were mapped against M. tuberculosis H37Rv reference genome, in order to identify single nucleotide polymorphisms (SNPs). The results of the initial mapping were further processed, and a frequency distribution of nucleotide variants within genes was identified and further analyzed. The majority of genomic positions in the M. tuberculosis H37Rv genome were conserved. Genes with the highest level of conservation were often associated with stress responses and maintenance of redox balance. Conversely, genes with high levels of nucleotide variation were often associated with drug resistance. We have provided a high-resolution analysis of the single-nucleotide variation of all M. tuberculosis genes across seven lineages as a resource to support future drug and vaccine development. We have identified a number of highly conserved genes, important in M. tuberculosis biology, that could potentially be used as targets for novel vaccine candidates and antituberculous medications.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis In the first half of the 20th century, the discovery of the Mycobacterium bovis BCG vaccine and antituberculous drugs heralded a new era in the control of TB. However, combating TB has proven challenging, especially with the emergence of HIV and drug resistance. A major hindrance in TB control is the lack of an effective vaccine, as the efficacy of BCG is geographically variable and provides little protection against pulmonary disease in high-risk groups. Our research is significant because it provides a resource to support future drug and vaccine development. We have achieved this by developing a better understanding of the nucleotide variation of all of the M. tuberculosis genes on a large scale and by identifying highly conserved genes that could potentially be used as targets for novel vaccine candidates and antituberculous medications.


Assuntos
Desenvolvimento de Medicamentos/métodos , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Vacinas contra a Tuberculose , Conjuntos de Dados como Assunto , Descoberta de Drogas , Humanos , Tuberculose/microbiologia
9.
Curr Opin Microbiol ; 51: 51-56, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325664

RESUMO

The vast majority of Escherichia coli and Klebsiella pneumoniae isolated from human clinical extra-intestinal infections are now multi-drug resistant (MDR). Extended Spectrum Beta Lactamase (ESBL) carriage in clinical isolates of these bacteria is now commonplace, and carriage of carbapenemases is continuing to increase. MDR is primarily concentrated in a small number of globally disseminated clones, which generally differ between ESBL and carbapenemase carrying-clones in E. coli, but seem to converge in K. pneumoniae. In both species MDR is mediated by acquisition and maintenance of MDR plasmids. The plasmids associated with ESBL and carbapenemases also differ, and when both resistances are present in the same strain they are generally on distinct plasmids. Recent research is attempting to provide clues as to why some lineages appear better suited to acquisition and maintenance of these plasmids without a fitness cost. Central to this is the appearance of adaptive mutations in intergenic regions, and selection on genes involved in anaerobic metabolism, hinting at a process whereby these clones can outcompete commensal strains of the same species to initiate long-term intestinal colonization.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Transferência Genética Horizontal , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Evolução Molecular , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Plasmídeos/metabolismo
10.
Microb Genom ; 4(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30307843

RESUMO

Campylobacter is the leading cause of bacterial enteritis in the developed world, and infections with the organism are largely sporadic in nature. Links between sporadic cases have not been established, with the majority of infections thought to be caused by genetically distinct isolates. Using a read-mapping approach, 158 clinical isolates collected during 2014 from the greater Nottinghamshire area were analysed to assess the local population structure and investigate potential case linkages between sporadic cases of campylobacteriosis. Four instances (2.5 %) of case linkage were observed across the dataset. This study demonstrates that case linkage does occur between sporadic Campylobacter infections, and provides evidence that a dual multi-locus sequence typing/within-lineage single nucleotide polymorphism typing approach to Campylobacter genomic epidemiology provides a benefit to public-health investigations.


Assuntos
Técnicas de Tipagem Bacteriana , Infecções por Campylobacter/genética , Campylobacter/classificação , Campylobacter/genética , Enterite/genética , Tipagem de Sequências Multilocus , Campylobacter/isolamento & purificação , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Enterite/epidemiologia , Enterite/microbiologia , Humanos , Epidemiologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...