Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 251(2): 450-7, 1986 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3099643

RESUMO

A second indolizidine alkaloid, epimeric with castanospermine, has been isolated from seeds of the Australian tree Castanospermum australe. The structure was established as 6-epicastanospermine by proton and carbon-13 nuclear magnetic resonance spectroscopy and mass spectrometry. 6-Epicastanospermine was found to be a potent inhibitor of amyloglucosidase, (an exo-1,4-alpha-glucosidase), a weak inhibitor of beta-galactosidase, and not to inhibit beta-glucosidase and alpha-mannosidase. These results indicate that glycosidase inhibitory activity cannot be predicted by comparison of the structure and stereochemistry with the appropriate sugars, since 6-epicastanospermine is an analog of mannose and not of glucose. The inhibition of amyloglucosidase was found to be competitive and to be more effective at higher pH values. Castanospermine and 6-epicastanospermine differed in their effect upon the mung bean processing enzymes, glucosidase I and II, in that the former is a potent inhibitor whereas the latter is a very poor inhibitor. Subtle alterations in stereochemistry of these alkaloids can therefore produce significant changes in their biological activity.


Assuntos
Alcaloides/isolamento & purificação , Fabaceae/análise , Inibidores de Glicosídeo Hidrolases , Indolizinas , Plantas Medicinais , Alcaloides/farmacologia , Glucana 1,4-alfa-Glucosidase/antagonistas & inibidores , Glicosídeo Hidrolases/antagonistas & inibidores , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...