Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34683421

RESUMO

Two distinct isolates of the facultative parasite, Tetrahymena rostrata were compared, identifying and utilising markers that are useful for studying clonal variation within the species were identified and utilised. The sequences of mitochondrial genomes and several nuclear genes were determined using Illumina short read sequencing. The two T. rostrata isolates had similar morphology. The linear mitogenomes had the gene content and organisation typical of the Tetrahymena genus, comprising 8 tRNA genes, 6 ribosomal RNA genes and 45 protein coding sequences (CDS), twenty-two of which had known function. The two isolates had nucleotide identity within common nuclear markers encoded within the histone H3 and H4 and small subunit ribosomal RNA genes and differed by only 2-4 nucleotides in a region of the characterised actin genes. Variation was observed in several mitochondrial genes and was used to determine intraspecies variation and may reflect the natural history of T. rostrata from different hosts or the geographic origins of the isolates.

2.
Plant Cell ; 26(3): 981-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24681618

RESUMO

The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1's additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure.


Assuntos
Evolução Molecular , Peptídeos/genética , Pré-Albumina/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeos/química , Filogenia , Pré-Albumina/química , Precursores de Proteínas/química , Precursores de Proteínas/genética , Sementes/genética , Homologia de Sequência de Aminoácidos
3.
J Biol Chem ; 288(19): 13885-96, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23548907

RESUMO

BACKGROUND: Sunflower trypsin inhibitor-1 (SFTI-1) and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) are potent protease inhibitors comprising a cyclic backbone. RESULTS: Elucidation of structure-activity relationships for SFTI-1 and MCoTI-II was used to design inhibitors with enhanced inhibitory activity. CONCLUSION: An analog of MCoTI-II is one of the most potent inhibitors of matriptase. SIGNIFICANCE: These results provide a solid basis for the design of selective peptide inhibitors of matriptase with therapeutic potential. The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase.


Assuntos
Peptídeos Cíclicos/química , Proteínas de Plantas/química , Serina Endopeptidases/química , Inibidores de Serina Proteinase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Helianthus/química , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Momordica/química , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/genética , Proteínas de Plantas/síntese química , Proteínas de Plantas/genética , Ligação Proteica , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA