Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(7): e2304792, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072638

RESUMO

The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2 , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2 , V-WSe2 ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe2 /WS2 , VSe2 /MoS2 ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.

2.
Inorg Chem ; 62(32): 12674-12682, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531606

RESUMO

Although magnetic order is suppressed by a strong frustration, it appears in complex forms such as a cycloid or spin density wave in weakly frustrated systems. Herein, we report a weakly magnetically frustrated two-dimensional (2D) van der Waals material CrPSe3. Polycrystalline CrPSe3 was synthesized at an optimized temperature of 700 °C to avoid the formation of any secondary phases (e.g., Cr2Se3). The antiferromagnetic transition appeared at TN ≈ 127 K with a large Curie-Weiss temperature θCW ≈ -301 K via magnetic susceptibility measurements, indicating weak frustration in CrPSe3 with a frustration factor of f (|θCW|/TN) ≈ 2.4. Evidently, the formation of a long-range incommensurate antiferromagnetic order was revealed by neutron diffraction measurements at low temperatures (below 120 K). The monoclinic crystal structure of the C2/m symmetry is preserved over the studied temperature range down to 20 K, as confirmed by Raman spectroscopy measurements. Our findings on the incommensurate antiferromagnetic order in 2D magnetic materials, not previously observed in the MPX3 family, are expected to enrich the physics of magnetism at the 2D limit, thereby opening opportunities for their practical applications in spintronics and quantum devices.

3.
Adv Sci (Weinh) ; 10(9): e2206842, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36698300

RESUMO

Among the recently discovered 2D intrinsic van der Waals (vdW) magnets, Fe3 GeTe2 (FGT) has emerged as a strong candidate for spintronics applications, due to its high Curie temperature (130 - 220 K) and magnetic tunability in response to external stimuli (electrical field, light, strain). Theory predicts that the magnetism of FGT can be significantly modulated by an external strain. However, experimental evidence is needed to validate this prediction and understand the underlying mechanism of strain-mediated vdW magnetism in this system. Here, the effects of pressure (0 - 20 GPa) are elucidated on the magnetic and structural properties of Fe3 GeTe2 by means of synchrotron Mössbauer source spectroscopy, X-ray powder diffraction and Raman spectroscopy over a wide temperature range of 10 - 290 K. A strong suppression of ferromagnetic ordering is observed with increasing pressure, and a paramagnetic ground state emerges when pressure exceeds a critical value, PPM ≈ 15 GPa. The anomalous pressure dependence of structural parameters and vibrational modes is observed at PC ≈ 7 GPa and attributed to an isostructural phase transformation. Density functional theory calculations complement these experimental findings. This study highlights pressure as a driving force for magnetic quantum criticality in layered vdW magnetic systems.

4.
Nat Commun ; 13(1): 4556, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961959

RESUMO

The device's integration of molecular electronics is limited regarding the large-scale fabrication of gap electrodes on a molecular scale. The van der Waals integration (vdWI) of a vertically aligned molecular layer (0D) with 2D or 3D electrodes indicates the possibility of device's integration; however, the active junction area of 0D-2D and 0D-3D vdWIs remains at a microscale size. Here, we introduce the robust fabrication of a vertical 1D-0D-1D vdWI device with the ultra-small junction area of 1 nm2 achieved by cross-stacking top carbon nanotubes (CNTs) on molecularly assembled bottom CNTs. 1D-0D-1D vdWI memories are demonstrated through ferroelectric switching of azobenzene molecules owing to the cis-trans transformation combined with the permanent dipole moment of the end-tail -CF3 group. In this work, our 1D-0D-1D vdWI memory exhibits a retention performance above 2000 s, over 300 cycles with an on/off ratio of approximately 105 and record current density (3.4 × 108 A/cm2), which is 100 times higher than previous study through the smallest junction area achieved in a vdWI. The simple stacking of aligned CNTs (4 × 4) allows integration of memory arrays (16 junctions) with high device operational yield (100%), offering integration guidelines for future molecular electronics.

5.
Adv Mater ; 34(10): e2106551, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34962658

RESUMO

Magnetic order has been proposed to arise from a variety of defects, including vacancies, antisites, and grain boundaries, which are relevant in numerous electronics and spintronics applications. Nevertheless, its magnetism remains controversial due to the lack of structural analysis. The escalation of ferromagnetism in vanadium-doped WSe2 monolayer is herein demonstrated by tailoring complex configurations of Se vacancies (SeVac ) via post heat-treatment. Structural analysis of atomic defects is systematically performed using transmission electron microscopy (TEM), enabled by the monolayer nature. Temperature-dependent magnetoresistance hysteresis ensures enhanced magnetic order after high-temperature heat-treatment, consistent with magnetic domain analysis from magnetic force microscopy (MFM). The vanadium-Se vacancy pairing is a key to promoting ferromagnetism via spin-flip by electron transfer, predicted from density-functional-theory (DFT) calculations. The approach toward nanodefect engineering paves a way to overcome weak magnetic order in diluted magnetic semiconductors (DMSs) for renovating semiconductor spintronics.

6.
ACS Nano ; 15(12): 20267-20277, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34807575

RESUMO

While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn, and Co, V is a distinctive dopant for ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs. Here, we report anomalous circularly polarized photoluminescence (CPL) in a V-doped WSe2 monolayer at room temperature. Excitons couple to V-induced spin-polarized holes to generate spin-selective positive trions, leading to differences in the populations of neutral excitons and trions between left and right CPL. Using transient absorption spectroscopy, we elucidate the origin of excitons and trions that are inherently distinct for defect-mediated and impurity-mediated trions. Ferromagnetic characteristics are further confirmed by the significant Zeeman splitting of nanodiamonds deposited on the V-doped WSe2 monolayer.

7.
Adv Sci (Weinh) ; 8(24): e2102911, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713632

RESUMO

The confined defects in 2D van der Waals (vdW)-layered semiconductors can be easily tailored using charge doping, strain, or an electric field. Nevertheless, gate-tunable magnetic order via intrinsic defects has been rarely observed to date. Herein, a gate-tunable magnetic order via resonant Se vacancies in WSe2 is demonstrated. The Se-vacancy states are probed via photocurrent measurements with gating to convert unoccupied states to partially occupied states associated with photo-excited carrier recombination. The magneto-photoresistance hysteresis is modulated by gating, which is consistent with the density functional calculations. The two energy levels associated with Se vacancies split with increasing laser power, owing to the robust Coulomb interaction and strong spin-orbit coupling. The findings offer a new approach for controlling the magnetic properties of defects in optoelectronic and spintronic devices using vdW-layered semiconductors.

8.
ACS Nano ; 15(8): 13770-13780, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34296605

RESUMO

ReS2 exhibits strong anisotropic optical and electrical responses originating from the asymmetric lattice. Here, we show that the anisotropy of monolayer (1L) ReS2 in optical scattering and electrical transport can be practically erased by lattice engineering via lithium (Li) treatment. Scanning transmission electron microscopy revealed that significant strain is induced in the lattice of Li-treated 1L-ReS2, due to high-density electron doping and the resultant formation of continuous tiling of nanodomains with randomly rotating orientations of 60°, which produced a nearly isotropic response of polarized Raman scattering and absorption of Li-treated 1L-ReS2. With Li treatment, the in-plane conductance of 1L-ReS2 increased by an order of magnitude, and its angle dependence became negligible. Our result that the asymmetric phase was converted into the isotropic phase by electron injection could significantly expand the optoelectronic applications of polymorphic two-dimensional transition metal dichalcogenides.

10.
Nat Nanotechnol ; 15(10): 861-867, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32719494

RESUMO

Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu-Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.

11.
Adv Sci (Weinh) ; 7(9): 1903076, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32382479

RESUMO

Diluted magnetic semiconductors including Mn-doped GaAs are attractive for gate-controlled spintronics but Curie transition at room temperature with long-range ferromagnetic order is still debatable to date. Here, the room-temperature ferromagnetic domains with long-range order in semiconducting V-doped WSe2 monolayer synthesized by chemical vapor deposition are reported. Ferromagnetic order is manifested using magnetic force microscopy up to 360 K, while retaining high on/off current ratio of ≈105 at 0.1% V-doping concentration. The V-substitution to W sites keeps a V-V separation distance of 5 nm without V-V aggregation, scrutinized by high-resolution scanning transmission electron microscopy. More importantly, the ferromagnetic order is clearly modulated by applying a back-gate bias. The findings open new opportunities for using 2D transition metal dichalcogenides for future spintronics.

12.
Adv Sci (Weinh) ; 7(4): 1902964, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099767

RESUMO

Atomically thin 2D van der Waals semiconductors are promising candidates for next-generation nanoscale field-effect transistors (FETs). Although large-area 2D van der Waals materials have been successfully synthesized, such nanometer-length-scale devices have not been well demonstrated in 2D van der Waals semiconductors. Here, controllable nanometer-scale transistors with a channel length of ≈10 nm are fabricated via vertical channels by squeezing an ultrathin insulating spacer between the out-of-plane source and drain electrodes, and the feasibility of high-density and large-scale fabrication is demonstrated. A large on-current density of ≈70 µA µm-1 nm-1 at a source-drain voltage of 0.5 V and a high on/off ratio of ≈107-109 are obtained in ultrashort 2D vertical channel FETs with monolayer MoS2 synthesized through chemical vapor deposition. The work provides a promising route toward the complementary metal-oxide-semiconductor-compatible fabrication of wafer-scale 2D van der Waals transistors with high-density integration.

13.
ACS Nano ; 13(12): 14437-14446, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31756072

RESUMO

Structural phase transitions in layered two-dimensional (2D) materials are of significant interest owing to their ability to exist in multiple metastable states with distinctive properties. However, phase transition in bulk MoS2 by nondestructive electron infusion has not yet been realized. In this study, we report the 2H to 1T' phase transition and in-between intermediates in bulk MoS2 using MoS2/[Ca2N]+·e- heterostructures, in which kinetic free electrons were directly injected into MoS2. We observed various phases in MoS2 ranging from heavily doped 2H to a distorted lattice state and then on to a complete 1T' state. Snapshots of the multiphase transition were captured by extraordinary Raman shift and bandgap reduction and were further elucidated by theoretical calculations. We also observed a weakening in interlayer coupling in the vicinity of the metallic regime, which led to an unusually strong photoluminescence emission, suggesting light-efficient bulk MoS2. Our results thus suggest the optoelectronic applications that can fully utilize the multiphase transition of bulk 2D materials.

14.
ACS Appl Mater Interfaces ; 11(45): 42528-42533, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31657203

RESUMO

The van der Waals (vdW) interaction in two-dimensional (2D)-layered materials affects key characteristics of electronic devices, such as the contact resistance, with a vertical heterostructure geometry. While various functionalizations to manipulate the properties of 2D materials have shown issues such as defect generation or have a limited spatial range for the methods, engineering the vdW interaction in nondestructive ways for device applications has not been tried or properly achieved yet. Here, we introduce the proximity engineering of the vdW interaction in multilayered graphene, which is observed as modified interlayer distances and deviated stacking orders by Raman spectroscopy. A 2D electride, [Ca2N]+·e-, possessing a low-work function of 2.6 eV, was used to trigger an avalanche of electrons over tens of graphene layers, exceeding the conventional spatial-range limit (∼1 nm) by screening with a carrier density of 1014 cm-2. Our proximity engineering reduces the vdW interaction in a nondestructive way and achieves a promising graphene-metal contact resistance of 500 Ω·µm without using complicated edge contacts, which demonstrates a way to use moderately decoupled graphene layers for device applications.

15.
ACS Nano ; 13(7): 8392-8400, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31241306

RESUMO

Piezoelectricity of transition metal dichalcogenides (TMDs) under mechanical strain has been theoretically and experimentally studied. Powerful strain sensors using Schottky barrier variation in TMD/metal junctions as a result of the strain-induced lattice distortion and associated ion-charge polarization were demonstrated. However, the nearly fixed work function of metal electrodes limits the variation range of a Schottky barrier. We demonstrate a highly sensitive strain sensor using a variable Schottky barrier in a MoS2/graphene heterostructure field effect transistor (FET). The low density of states near the Dirac point in graphene allows large modulation of the graphene Fermi level and corresponding Schottky barrier in a MoS2/graphene junction by strain-induced polarized charges of MoS2. Our theoretical simulations and temperature-dependent electrical measurements show that the Schottky barrier change is maximized by placing the Fermi level of the graphene at the charge neutral (Dirac) point by applying gate voltage. As a result, the maximum Schottky barrier change (ΔΦSB) and corresponding current change ratio under 0.17% strain reach 118 meV and 978, respectively, resulting in an ultrahigh gauge factor of 575 294, which is approximately 500 times higher than that of metal/TMD junction strain sensors (1160) and 140 times higher than the conventional strain sensors (4036). The ultrahigh sensitivity of graphene/MoS2 heterostructure FETs can be developed for next-generation electronic and mechanical-electronic devices.

16.
Dalton Trans ; 48(24): 8556-8559, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31140502

RESUMO

A new antifluorite-type (Li2O-type) cubic compound, V2Se, has been synthesized for the first time by changing the amount of selenium in chemical vapor transport. The vanadium-based cubic phase studied here reveals a metal-metal bonding feature in the electronic band structure. This compound is the first example of an antifluorite-type cubic structure in a V-Se system.

17.
Chem Rev ; 118(13): 6297-6336, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29957928

RESUMO

Transition metal dichalcogenides are layered materials which are composed of transition metals and chalcogens of the group VIA in a 1:2 ratio. These layered materials have been extensively investigated over synthesis and optical and electrical properties for several decades. It can be insulators, semiconductors, or metals revealing all types of condensed matter properties from a magnetic lattice distorted to superconducting characteristics. Some of these also feature the topological manner. Instead of covering the semiconducting properties of transition metal dichalcogenides, which have been extensively revisited and reviewed elsewhere, here we present the structures of metallic transition metal dichalcogenides and their synthetic approaches for not only high-quality wafer-scale samples using conventional methods (e.g., chemical vapor transport, chemical vapor deposition) but also local small areas by a modification of the materials using Li intercalation, electron beam irradiation, light illumination, pressures, and strains. Some representative band structures of metallic transition metal dichalcogenides and their strong layer-dependence are reviewed and updated, both in theoretical calculations and experiments. In addition, we discuss the physical properties of metallic transition metal dichalcogenides such as periodic lattice distortion, magnetoresistance, superconductivity, topological insulator, and Weyl semimetal. Approaches to overcome current challenges related to these materials are also proposed.

18.
ACS Appl Mater Interfaces ; 10(12): 10580-10586, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29504404

RESUMO

Because of strong Coulomb interaction in two-dimensional van der Waals-layered materials, the trap charges at the interface strongly influence the scattering of the majority carriers and thus often degrade their electrical properties. However, the photogenerated minority carriers can be trapped at the interface, modulate the electron-hole recombination, and eventually influence the optical properties. In this study, we report the role of the hole trap sites on the inconsistency in the electrical and optical phenomena between two systems with different interfacial trap densities, which are monolayer MoS2-based field-effect transistors (FETs) on hexagonal boron nitride (h-BN) and SiO2 substrates. Electronic transport measurements indicate that the use of h-BN as a gate insulator can induce a higher n-doping concentration of the monolayer MoS2 by suppressing the free-electron transfer from the intrinsically n-doped MoS2 to the SiO2 gate insulator. Nevertheless, optical measurements show that the electron concentration in MoS2/SiO2 is heavier than that in MoS2/h-BN, manifested by the relative red shift of the A1g Raman peak. The inconsistency in the evaluation of the electron concentration in MoS2 by electrical and optical measurements is explained by the trapping of the photogenerated holes in the spatially modulated valence band edge of the monolayer MoS2 caused by the local strain from the SiO2/Si substrate. This photoinduced electron doping in MoS2/SiO2 is further confirmed by the development of the trion component in the power-dependent photoluminescence spectra and negative shift of the threshold voltage of the FET after illumination.

19.
ACS Nano ; 11(12): 11803-11830, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29219304

RESUMO

Since graphene became available by a scotch tape technique, a vast class of two-dimensional (2D) van der Waals (vdW) layered materials has been researched intensively. What is more intriguing is that the well-known physics and chemistry of three-dimensional (3D) bulk materials are often irrelevant, revealing exotic phenomena in 2D vdW materials. By further constructing heterostructures of these materials in the planar and vertical directions, which can be easily achieved via simple exfoliation techniques, numerous quantum mechanical devices have been demonstrated for fundamental research and technological applications. It is, therefore, necessary to review the special features in 2D vdW materials and to discuss the remaining issues and challenges. Here, we review the vdW materials library, technology relevance, and specialties of vdW materials covering the vdW interaction, strong Coulomb interaction, layer dependence, dielectric screening engineering, work function modulation, phase engineering, heterostructures, stability, growth issues, and the remaining challenges.

20.
Nat Commun ; 8(1): 2163, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255139

RESUMO

The conversion of chalcogen atoms to other types in transition metal dichalcogenides has significant advantages for tuning bandgaps and constructing in-plane heterojunctions; however, difficulty arises from the conversion of sulfur or selenium to tellurium atoms owing to the low decomposition temperature of tellurides. Here, we propose the use of sodium for converting monolayer molybdenum disulfide (MoS2) to molybdenum ditelluride (MoTe2) under Te-rich vapors. Sodium easily anchors tellurium and reduces the exchange barrier energy by scooting the tellurium to replace sulfur. The conversion was initiated at the edges and grain boundaries of MoS2, followed by complete conversion in the entire region. By controlling sodium concentration and reaction temperature of monolayer MoS2, we tailored various phases such as semiconducting 2H-MoTe2, metallic 1T'-MoTe2, and 2H-MoS2-x Te x alloys. This concept was further extended to WS2. A high valley polarization of ~37% in circularly polarized photoluminescence was obtained in the monolayer WS2-x Te x alloy at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...