Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(6): 2455-2459, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35118859

RESUMO

Exploring materials that can absorb near-infrared (NIR) light to produce reactive oxygen species (ROS) is necessary for many fields. Herein we show that thulium oxide nanoparticles are viable for NIR-stimulated ROS generation. This property may be related to the unique energy levels, large absorption cross section, low fluorescence emission, and ∼10-3 s lifetime of the 3H4 state of Tm ions. We further demonstrate the impact of these nanoparticles on photodynamic therapy (PDT), in which impressive tumor inhibition was recorded after exposure to either a broadband halogen lamp or an 808 nm laser. Our results may provide insight into the areas of photocatalysis, pollution treatment, and fine chemical synthesis.


Assuntos
Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Radiossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/química , Túlio/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Raios Infravermelhos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia , Radiossensibilizantes/química , Radiossensibilizantes/efeitos da radiação , Túlio/química , Túlio/efeitos da radiação
2.
Chem Commun (Camb) ; 57(72): 9148-9151, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498611

RESUMO

As a promising 19F MRI tracer, the relatively slow lattice-spin relaxation of CaF2 nanocrystals leads to an unacceptable scanning time in MR imaging, hampering their application. We herein controlled the size and lattice distortion of CaF2 nanocrystals and showed that the shortened interplanar spacing pronouncedly sped up the longitude relaxation.

3.
Acta Biomater ; 131: 508-518, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214663

RESUMO

Radio-sensitization is highly desired to reduce side-effect of the harsh dose of radiation therapy (RT), for which nanoparticles with high atomic number elements provide a promising tool. However, insufficient knowledge on utilizing the interaction between nanoparticles and cancerous cells hampers the improvement of therapeutic outcome. We herein employed NaGdF4:Yb,Er nano-crystals as the sensitizer, and modified them with a tumor targeting agent and a mitochondria targeting moiety, separately and jointly, to achieve varied extent of mitochondrial accumulation. We observed that NaGdF4:Yb,Er nano-crystal, even unmodified with targeting ligands, is effective for radio-sensitization. Furthermore, the extent of mitochondrial targeting was responsible for sensitization efficiency both in vitro and in vitro. By RNA sequencing technique, the result was ascribed to the reactive oxygen species (ROS) mediated TNF-JNK pathway and cell cycle arrest besides breaking DNA, in contrast to only DNA damage only with those untargeted nanoparticles. Our work indicated that ROS generated by the irradiation can be utilized by activating an alternative apoptotic pathway with mitochondrial targeting nanoparticles, and therefore may suggest an approach for the enhancement of radio-sensitization. STATEMENT OF SIGNIFICANCE: Radiosensitization by nanoparticles could reduce the burden of cancer due to lowering the dose of radiation therapy and reducing side-effect. How to fully utilize the interactions of irradiation-nanoparticles-biotissues remains a challenge for improving the outcome of radiosensitization. In this manuscript, by modifying tumor-targeting and mitochondria-targeting ligands on nanoparticles, separately and jointly, we demonstrated that the radiosensitization efficiency of NaGdF4:Yb,Er nanoparticle depends on the extent of accumulation near mitochondria. By RNA-seq technique, the RT sensitization with mitochondrial targeting was ascribed to ROS-mediated TNF-JNK pathway and cell cycle arrest, in contrast to only DNA breaks with untargeted nanoparticles. The results suggested a strategy for better utilization of the energy of therapeutic irradiation and demonstrate that subcellular targeting is a potent factor for designing nanoparticulate radiosensitizers.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Mitocôndrias , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
4.
Nanoscale Adv ; 4(1): 95-101, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36132966

RESUMO

Gadolinium oxide nanoparticles (GONs) have the potential to be one of the best candidates for the contrast agents of magnetic resonance imaging. Even though the influence of parameters on the relaxation has been substantially demonstrated, the variation of the r 1 of GONs with a similar structure and surface chemistry implied our limited understanding. We herein synthesized GONs with adjustable size, shape, and crystallinity, modified them with a series of molecules with different acidities, and recorded their r 1 values and imaging contrast. Our results showed that the isoelectric point could be regarded as an indicator of the relaxation covering the influence of both surface modification and size, which highlighted the impact of protons dissociated from the contrast agents. We further showed that the nanoparticles with lower crystallinity possess higher relaxivity, and this phenomenon manifested significantly under a low field. Our work clarified that the longitudinal relaxivity of Gd2O3 nanoparticles is sensitively dependent on the numbers of H+ generated from the surface and in the environment, which may shed light on developing high-performance nanoparticulate T 1 contrast agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...