RESUMO
Biofilm-forming cyanobacteria are abundant in mangrove ecosystems, colonizing various niches including sediment surface and periphyton where they can cover large areas, yet have received limited attention. Several filamentous isolates were recently isolated from Guadeloupe, illustrating the diversity and novelty present in these biofilms. In this study, nine strains belonging to three novel lineages found abundantly in Guadeloupe biofilms are characterized by genome sequencing, morphological and ultrastructural examination, metabolome fingerprinting and searched for secondary metabolites biosynthesis pathways. Assignation of two lineages to known genera is confirmed, namely Scytonema and Jaaginema. The third lineage corresponds to a new Coleofasciculales genus herein described as Karukerafilum gen. nov. The four strains belonging to this genus group into two subclades, one of which displays genes necessary for nitrogen fixation as well as the complete pathway for geosmin production. This study gives new insights into the diversity of mangrove biofilm-forming cyanobacteria, including genome-based description of a new genus and the first genome sequence available for the genus Jaaginema.
RESUMO
Benthic cyanobacteria strains from Guadeloupe have been investigated for the first time by combining phylogenetic, chemical and biological studies in order to better understand the taxonomic and chemical diversity as well as the biological activities of these cyanobacteria through the effect of their specialized metabolites. Therefore, in addition to the construction of the phylogenetic tree, indicating the presence of 12 potentially new species, an LC-MS/MS data analysis workflow was applied to provide an overview on chemical diversity of 20 cyanobacterial extracts, which was linked to antimicrobial activities evaluation against human pathogenic and ichtyopathogenic environmental strains.
Assuntos
Produtos Biológicos/farmacologia , Cianobactérias/química , Cianobactérias/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Filogenia , Antibacterianos , Anti-Infecciosos , Guadalupe , Áreas AlagadasRESUMO
Cold seeps in the Gulf of Mexico are often dominated by mussels of the genus Bathymodiolus that harbour symbiotic bacteria in their gills. In this study, we analysed symbiont diversity, abundance and metabolic potential in three mussel species from the northern Gulf of Mexico: Bathymodiolus heckerae from the West Florida Escarpment, Bathymodiolus brooksi from Atwater Valley and Alaminos Canyon, and 'Bathymodiolus' childressi, which co-occurs with B. brooksi in Alaminos Canyon. Comparative 16S rRNA sequence analysis confirmed a single methanotroph-related symbiont in 'B.' childressi and a dual symbiosis with a methanotroph- and thiotroph-related symbiont in B. brooksi. A previously unknown diversity of four co-occurring symbionts was discovered in B. heckerae: a methanotroph, two phylogenetically distinct thiotrophs and a methylotroph-related phylotype not previously described from any marine invertebrate symbiosis. A gene characteristic of methane-oxidzing bacteria, pmoA, was identified in all three mussel species confirming the methanotrophic potential of their symbionts. Stable isotope analyses of lipids and whole tissue also confirmed the importance of methanotrophy in the carbon nutrition of all of the mussels. Analyses of absolute and relative symbiont abundance in B. heckerae and B. brooksi using fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization indicated a clear dominance of methanotrophic over thiotrophic symbionts in their gill tissues. A site-dependent variability in total symbiont abundance was observed in B. brooksi, with specimens from Alaminos Canyon harbouring much lower densities than those from Atwater Valley. This shows that symbiont abundance is not species-specific but can vary considerably between populations.