Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 81(2): 714-27, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22803731

RESUMO

Homing behaviour and group cohesion in Atlantic cod Gadus morhua from the northern Gulf of St Lawrence were studied based on tagging-recapture data from two periods, the 1980s and a recent period from 1996 to 2008. Two or more tags from a single tagging experiment were frequently recovered together in subsequent years. The null hypothesis was tested that the frequency of matching tag recoveries occurred by chance only through random mixing of tagged G. morhua before their recapture by the commercial fishery. The alternative hypothesis was that non-random, positive association (group cohesion) existed among tagged individuals that persisted through time and during migrations. Results show that the G. morhua population exhibits a homing behaviour, with temporal stability across seasons and years: 50% of recaptured fish in the recent period were caught <34 km from their mark site, even 3 years after release. In the 1980s, G. morhua were located at <10 km from their release site 1 year after tagging during summer and at <16 km during spring and autumn combined. Despite the increasing distance between the mark and recapture sites over time, the difference was not significant. In addition, occurrences of two or more tagged fish from the same release event that were caught together indicated a non-random association among individual fish for periods of one to several years and through migrations over several hundred kilometres. Hence G. morhua showed group cohesion in addition to site fidelity. These two interacting behaviours may be fundamental for the rebuilding and conservation of depleted fish stocks.


Assuntos
Sistemas de Identificação Animal , Gadus morhua/fisiologia , Comportamento de Retorno ao Território Vital , Animais , Oceano Atlântico , Canadá
2.
Geochem Trans ; 2(1): 112, 2001 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-16759420

RESUMO

Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5-65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.

3.
Oecologia ; 123(2): 241-251, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-28308729

RESUMO

The cascade model successfuly predicts many patterns in reported food webs. A key assumption of this model is the existence of a predetermined trophic hierarchy; prey are always lower in the hierarchy than their predators. At least three studies have suggested that, in animal food webs, this hierarchy can be explained to a large extent by body size relationships. A second assumption of the standard cascade model is that trophic links not prohibited by the hierarchy occur with equal probability. Using nonparametric contingency table analyses, we tested this "equiprobability hypothesis" in 16 published animal food webs for which the adult body masses of the species had been estimated. We found that when the hierarchy was based on body size, the equiprobability hypothesis was rejected in favor of an alternative, "predator-dominance" hypothesis wherein the probability of a trophic link varies with the identity of the predator. Another alternative to equiprobabilty is that the probability of a trophic link depends upon the ratio of the body sizes of the two species. Using nonparametric regression and liklihood ratio tests, we show that a size-ratio based model represents a significant improvement over the cascade model. These results suggest that models with heterogeneous predation probabilities will fit food web data better than the homogeneous cascade model. They also suggest a new way to bridge the gap between static and dynamic food web models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...