Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19010, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347903

RESUMO

Additive manufacturing, also called 3D printing, has the potential to enable the development of flexible, wearable and customizable batteries of any shape, maximizing energy storage while also reducing dead-weight and volume. In this work, for the first time, three-dimensional complex electrode structures of high-energy density LiNi1/3Mn1/3Co1/3O2 (NMC 111) material are developed by means of a vat photopolymerization (VPP) process combined with an innovative precursor approach. This innovative approach involves the solubilization of metal precursor salts into a UV-photopolymerizable resin, so that detrimental light scattering and increased viscosity are minimized, followed by the in-situ synthesis of NMC 111 during thermal post-processing of the printed item. The absence of solid particles within the initial resin allows the production of smaller printed features that are crucial for 3D battery design. The formulation of the UV-photopolymerizable composite resin and 3D printing of complex structures, followed by an optimization of the thermal post-processing yielding NMC 111 is thoroughly described in this study. Based on these results, this work addresses one of the key aspects for 3D printed batteries via a precursor approach: the need for a compromise between electrochemical and mechanical performance in order to obtain fully functional 3D printed electrodes. In addition, it discusses the gaps that limit the multi-material 3D printing of batteries via the VPP process.

2.
Micron ; 153: 103185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34826759

RESUMO

This paper describes an innovative way of using environmental scanning electron microscopy (ESEM) and the development of a suitable accessory to perform in situ observation of living seedlings in the ESEM. We provide details on fabrication of an accessory that proved to be essential for such experiments but inexpensive and easy to build in the laboratory, and present our in situ observations of the tissue and cell surfaces. Sample-specific configurations and optimized tuning of the ESEM were defined to maintain Arabidopsis and flax seedlings viable throughout repetitive exposure to the imaging conditions in the microscope chamber. This method permitted us to identify cells and tissues of the live plantlets and characterize their surface morphology during their early stage of growth and development. We could extend the application of this technique, to visualize the response of living cells and tissues to exogenous enzymatic treatments with polygalacturonase in Arabidopsis, and their interaction with hyphae of the wilt fungus Verticillium dahliae during artificial infection in flax plantlets. Our results provide an incentive to the use of the ESEM for in situ studies in plant science and a guide for researchers to optimize their electron microscopy observation in the relevant fields.


Assuntos
Arabidopsis , Fungos , Hifas , Microscopia Eletrônica de Varredura , Doenças das Plantas , Plantas
3.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685657

RESUMO

Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.


Assuntos
Linho/crescimento & desenvolvimento , Linho/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcrição Gênica , Parede Celular/metabolismo , Endosperma/metabolismo , Ácidos Graxos/metabolismo , Linho/ultraestrutura , Giberelinas/metabolismo , Glucose/metabolismo , Endogamia , Cinética , Metabolômica , Fenótipo , Mucilagem Vegetal/ultraestrutura , Óleos de Plantas/metabolismo , Análise de Componente Principal , Recombinação Genética/genética , Sementes/ultraestrutura , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma/genética
4.
Sci Rep ; 9(1): 18031, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792314

RESUMO

Among the 3D-printing technologies, fused deposition modeling (FDM) represents a promising route to enable direct incorporation of the battery within the final 3D object. Here, the preparation and characterization of lithium iron phosphate/polylactic acid (LFP/PLA) and SiO2/PLA 3D-printable filaments, specifically conceived respectively as positive electrode and separator in a lithium-ion battery is reported. By means of plasticizer addition, the active material loading within the positive electrode is raised as high as possible (up to 52 wt.%) while still providing enough flexibility to the filament to be printed. A thorough analysis is performed to determine the thermal, electrical and electrochemical effect of carbon black as conductive additive in the positive electrode and the electrolyte uptake impact of ceramic additives in the separator. Considering both optimized filaments composition and using our previously reported graphite/PLA filament for the negative electrode, assembled and "printed in one-shot" complete LFP/Graphite battery cells are 3D-printed and characterized. Taking advantage of the new design capabilities conferred by 3D-printing, separator patterns and infill density are discussed with a view to enhance the liquid electrolyte impregnation and avoid short-circuits.

5.
Front Plant Sci ; 10: 684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293601

RESUMO

The external seed coat cell layer of certain species is specialized in the production and extrusion of a polysaccharide matrix called mucilage. Variations in the content of the released mucilage have been mainly associated with genetically regulated physiological modifications. Understanding the mucilage extrusion process in crop species is of importance to gain deeper insight into the complex cell wall biosynthesis and dynamics. In this study, we took advantage of the varying polysaccharide composition and the size of the flax mucilage secretory cells (MSCs) to study mucilage composition and extrusion in this species of agricultural interest. We demonstrate herein that flax MSCs are structured in four superimposed layers and that rhamnogalacturonans I (RG I) are firstly synthesized, in the upper face, preceding arabinoxylan and glucan synthesis in MSC lower layers. Our results also reveal that the flax mucilage release originates from inside MSC, between the upper and deeper layers, the latter collaborating to trigger polysaccharide expansion, radial cell wall breaking and mucilage extrusion in a peeling fashion. Here, we provide evidence that the layer organization and polysaccharide composition of the MSCs regulate the mucilage release efficiency like a peeling mechanism. Finally, we propose that flax MSCs may represent an excellent model for further investigations of mucilage biosynthesis and its release.

6.
Inorg Chem ; 49(16): 7401-13, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20690749

RESUMO

We have recently reported a promising 3.6 V metal fluorosulphate (LiFeSO(4)F) electrode, capable of high capacity, rate capability, and cycling stability. In the current work, we extend the fluorosulphate chemistry from lithium to sodium-based systems. In this venture, we have reported the synthesis and crystal structure of NaMSO(4)F candidates for the first time. As opposed to the triclinic-based LiMSO(4)F phases, the NaMSO(4)F phases adopt a monoclinic structure. We further report the degree and possibility of forming Na(Fe(1-x)M(x))SO(4)F and (Na(1-x)Li(x))MSO(4)F (M = Fe, Co, Ni) solid-solution phases for the first time. Relying on the underlying topochemical reaction, we have successfully synthesized the NaMSO(4)F, Na(Fe(1-x)M(x))SO(4)F, and (Na(1-x)Li(x))MSO(4)F products at a low temperature of 300 degrees C using both ionothermal and solid-state syntheses. The crystal structure, thermal stability, ionic conductivity, and reactivity of these new phases toward Li and Na have been investigated. Among them, NaFeSO(4)F is the only one to present some redox activity (Fe(2+)/Fe(3+)) toward Li at 3.6 V. Additionally, this phase shows a pressed-pellet ionic conductivity of 10(-7) S x cm(-1). These findings further illustrate the richness of the fluorosulphate crystal chemistry, which has just been recently unveiled.

7.
J Phys Chem B ; 110(11): 5262-72, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539456

RESUMO

Nanocrystalline Ce(1)(-)(x)Ti(x)O(2) (0 < or = x < or = 0.4) and Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2)(-)(delta) (x = 0.15, y = 0.01, 0.02) solid solutions crystallizing in fluorite structure have been prepared by a single step solution combustion method. Temperature programmed reduction and XPS study of Ce(1)(-)(x)Ti(x)O(2) (x = 0.0-04) show complete reduction of Ti(4+) to Ti(3+) and reduction of approximately 20% Ce(4+) to Ce(3+) state compared to 8% Ce(4+) to Ce(3+) in the case of pure CeO(2) below 675 degrees C. The substitution of Ti ions in CeO(2) enhances the reducibility of CeO(2). Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. The H/Pt atomic ratio at 30 degrees C over Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) is 5 and that over Ce(0.99)Pt(0.01)O(2)(-)(delta) is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2) (x = 0.15, y = 0.01, 0.02) compared to Ce(1)(-)(x)Pt(x)O(2) (x = 0.01, 0.02). Synergistic involvement of Pt(2+)/Pt degrees and Ti(4+)/Ti(3+) redox couples in addition to Ce(4+)/Ce(3+) due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near E(F) is shown to be responsible for improved redox property and higher catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...