Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 43(23): 5829-5832, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499953

RESUMO

Random media introduce large degrees of freedom in device design and can thus address challenges in manipulating optical waves. Wave shaping with metasurfaces has mainly utilized periodic or quasi-periodic grids, and the potential of random arrangement of particles for devices has only come under investigation recently. The main difficulty in pursuing random metasurfaces is the identification of the degrees of freedom that optimize their efficiencies and functions. They can also encode information using the statistics of particle distribution. We propose a phase-map that accounts for the statistical nature of random media. The method takes into account effects of random near-field couplings that introduce phase errors by affecting the phase shift of elements. The proposed approach increases the efficiency of our random metasurface devices by up to ∼20%. This work paves the way toward the efficient design of random metasurfaces with potential applications in highly secure optical cryptography and information encoding.

2.
Sci Rep ; 8(1): 7162, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740043

RESUMO

Metasurfaces are generally designed by placing scatterers in periodic or pseudo-periodic grids. We propose and discuss design rules for functional metasurfaces with randomly placed anisotropic elements that randomly sample a well-defined phase function. By analyzing the focusing performance of random metasurface lenses as a function of their density and the density of the phase-maps used to design them, we find that the performance of 1D metasurfaces is mostly governed by their density while 2D metasurfaces strongly depend on both the density and the near-field coupling configuration of the surface. The proposed approach is used to design all-polarization random metalenses at near infrared frequencies. Challenges, as well as opportunities of random metasurfaces compared to periodic ones are discussed. Our results pave the way to new approaches in the design of nanophotonic structures and devices from lenses to solar energy concentrators.

3.
Opt Express ; 25(21): 24974-24982, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041170

RESUMO

Metasurfaces have attracted significant attention due to their novel designs for flat optics. However, the approach usually used to engineer metasurface devices assumes that neighboring elements are identical, by extracting the phase information from simulations with periodic boundaries, or that near-field coupling between particles is negligible, by extracting the phase from single particle simulations. This is not the case most of the time and the approach thus prevents the optimization of devices that operate away from their optimum. Here, we propose a versatile numerical method to obtain the phase of each element within the metasurface (meta-atoms) while accounting for near-field coupling. Quantifying the phase error of each element of the metasurfaces with the proposed local phase method paves the way to the design of highly efficient metasurface devices including, but not limited to, deflectors, high numerical aperture metasurface concentrators, lenses, cloaks, and modulators.

4.
Opt Lett ; 42(8): 1520-1523, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409787

RESUMO

Metasurfaces are promising tools toward novel designs for flat optics applications. As such, their quality and tolerance to fabrication imperfections need to be evaluated with specific tools. However, most such tools rely on the geometrical optics approximation and are not straightforwardly applicable to metasurfaces. In this Letter, we introduce and evaluate for metasurfaces parameters such as intercept factor and slope error usually defined for solar concentrators in the realm of ray-optics. After proposing definitions valid in physical optics, we put forward an approach to calculate them. As examples, we design three different concentrators based on three specific unit cells and assess them numerically. The concept allows for comparison of the efficiency of the metasurfaces and their sensitivities to fabrication imperfections and will be critical for practical systems implementation.

5.
Phys Rev Lett ; 115(1): 017701, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26182120

RESUMO

Electromagnetic cavities are used in numerous domains of applied and fundamental physics, from microwave ovens and electromagnetic compatibility to masers, quantum electrodynamics (QED), and quantum chaos. The wave fields established in cavities are statically fixed by their geometry, which are usually modified by using mechanical parts like mode stirrers in reverberation chambers or screws in masers and QED. Nevertheless, thanks to integral theorems, tailoring the cavity boundaries theoretically permits us to design at will the wave fields they support. Here, we show in the microwave domain that it is achievable dynamically simply by using electronically tunable metasurfaces that locally modify the boundaries, switching them in real time from Dirichlet to Neumann conditions. We prove that at a high modal density, counterintuitively, it permits us to create wave patterns presenting hot spots of intense energy. We explain and model the physical mechanism underlying the concept, which allows us to find a criterion ensuring that modifying parts of a cavity's boundaries turn it into a completely different one. We finally prove that this approach even permits us, in the limiting case where the cavity supports only well-separated resonances, to choose the frequencies at which the latter occur.

7.
Sci Rep ; 4: 6693, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25331498

RESUMO

In this article we propose to use electronically tunable metasurfaces as spatial microwave modulators. We demonstrate that like spatial light modulators, which have been recently proved to be ideal tools for controlling light propagation through multiple scattering media, spatial microwave modulators can efficiently shape in a passive way complex existing microwave fields in reverberating environments with a non-coherent energy feedback. Unlike in free space, we establish that a binary-only phase state tunable metasurface allows a very good control over the waves, owing to the random nature of the electromagnetic fields in these complex media. We prove in an everyday reverberating medium, that is, a typical office room, that a small spatial microwave modulator placed on the walls can passively increase the wireless transmission between two antennas by an order of magnitude, or on the contrary completely cancel it. Interestingly and contrary to free space, we show that this results in an isotropic shaped microwave field around the receiving antenna, which we attribute again to the reverberant nature of the propagation medium. We expect that spatial microwave modulators will be interesting tools for fundamental physics and will have applications in the field of wireless communications.

8.
Opt Express ; 22(16): 18881-8, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25320974

RESUMO

The recent concept of metasurfaces is a powerful tool to shape waves by governing precisely the phase response of each constituting element through its resonance properties. While most efforts are devoted to realize reconfigurable metasurfaces that allow such complete phase control, for many applications a binary one is sufficient. Here, we propose and demonstrate through experiments and simulations a binary state tunable phase reflector based on the concept of hybridized resonators as unit cell for a possible metasurface. The concept presents the great advantages to be very general, scalable to all frequency domains and above all very robust to fluctuations induced by the tunable mechanism, as we prove it at microwave frequencies using electronically tunable patch reflectors.

9.
Phys Rev Lett ; 112(4): 043902, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580451

RESUMO

In this Letter we propose to use subwavelength diffraction gratings as very good semitransparent mirrors for electromagnetic waves to design open cavities. To do so, we replace part of the walls of a cavity by such a grating. We numerically and analytically link the grating characteristics to the spectral properties of the realized open cavity. Then we demonstrate that the eigenmodes of the cavity can be transmitted perfectly through the grating to the exterior, thereby turning a point source inside the cavity into a very directive source. We investigate the effect of disorder, which leads to isotropic radiation patterns, and perform experiments in the microwave domain in order to support our claims. Finally, we present an example of application of the concept in fundamental physics, by measuring from outside the eigenmodes of a disordered microwave cavity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...