Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(4): 191, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467910

RESUMO

The objective of this work was to develop an actinide-specific monolithic support in capillary designed to immobilize precise Pu:Am ratios and its coupling to inductively coupled plasma mass spectrometry (ICP-MS) for immobilized metal affinity chromatography applications. This format offers many advantages, such as reducing the sample amount and waste production, which are of prime importance when dealing with highly active radioelements. Four organic phosphorylated-based monoliths were synthesized in situ through UV photo-polymerization in capillary and characterized. The capillary coupling to ICP-MS was set up in conventional laboratory using Th and Sm as chemical analogues of Pu and Am. A dedicated method was developed to quantify online Th and Sm amounts immobilized on the monolithic capillaries, allowing to select the best monolith candidate poly(BMEP-co-EDMA)adp. By precisely adjusting the elemental composition in the loading solutions and applying the developed quantification method, the controlled immobilization of several Th:Sm molar ratios onto the monolith was successful. Finally, the capillary ICP-MS coupling was transposed in a glove box and by applying the strategy developed to design the monolithic support using Th and Sm, the immobilization of a 10.5 ± 0.2 (RSD = 2.3%, n = 3) Pu:Am molar ratio reflecting Pu ageing over 48 years was achieved in a controlled manner on poly(BMEP-co-EDMA)adp. Hence, the new affinity capillary monolithic support was validated, with only hundred nanograms or less of engaged radioelements and can be further exploited to precisely determine differential interactions of Pu and Am with targeted biomolecules in order to better anticipate the effect of Am on Pu biodistribution.

2.
Talanta ; 219: 121345, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887074

RESUMO

Capillary electrophoresis (CE) was hyphenated to multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) to determine the model age of a highly enriched uranium (HEU) sample using the 234U/230Th radiochronometer. The use of hydroxymethylbutyric acid (HMBA) as the CE electrolyte was investigated, and a complexation stacking method was developed to increase the thorium signal obtained. The age of the material was determined by measuring the 230Th content of the HEU sample using isotope dilution in conjunction with the CE-MC-ICP-MS protocol. The CE-MC-ICP-MS protocol and a standard offline protocol using gravitational chromatography both gave results in accordance within uncertainties with the production date of the HEU sample (March 1965). Liquid waste production was only of a few microliters with the use of CE. The hyphenation of CE with MC-ICP-MS render the measurement of the age of the HEU material in less than one day possible. Obtaining results in a timely fashion is of particular importance for nuclear forensics studies.

3.
Anal Chem ; 90(14): 8622-8628, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29929369

RESUMO

Precise isotopic and elemental characterization of spent nuclear fuel is a major concern for the validation of the neutronic calculation codes and waste management strategy in the nuclear industry. Generally, the elements of interest, particularly U and Pu which are the two major elements present in spent fuel, are purified by ion exchange or extractant resins before off-line measurements by thermal ionization mass spectrometry. The aim of the present work was to develop a new analytical approach based on capillary electrophoresis (CE) hyphenated to a multicollector inductively coupled plasma mass spectrometer (MC-ICPMS) for online isotope ratio measurements. An electrophoretic separation protocol of U, Pu, and the fraction containing fission products and minor actinides (Am and Cm) was developed using acetic acid as the electrolyte and complexing agent. The instrumentation for CE was designed to be used in a glovebox, and a laboratory-built interface was developed for hyphenation with MC-ICPMS. The separation was realized with only a few nL of a solution of spent nuclear fuel, and the reproducibilities obtained on the U and Pu isotope ratios were on the order of a few ‰ which is comparable to those obtained by thermal ionization mass spectrometry (TIMS). This innovative protocol allowed a tremendous reduction of the analyte masses from µg to ng and also a drastic reduction of the liquid waste production from mL to µL. In addition, the time of analysis was shorted by at least a factor of three. All of these improved parameters are of major interest for nuclear applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...