Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1533(1): 38-50, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38294960

RESUMO

It has been more than a century since Pío del Río-Hortega first characterized microglia in histological stains of brain tissue. Since then, significant advances have been made in understanding the role of these resident central nervous system (CNS) macrophages. In particular, it is now known that microglia can sense neural activity and modulate neuronal circuits accordingly. We review the mechanisms by which microglia detect changes in neural activity to then modulate synapse numbers in the developing and mature CNS. This includes responses to both spontaneous and experience-driven neural activity. We further discuss activity-dependent mechanisms by which microglia regulate synaptic function and neural circuit excitability. Together, our discussion provides a comprehensive review of the activity-dependent functions of microglia within neural circuits in the healthy CNS, and highlights exciting new open questions related to understanding more fully microglia as key components and regulators of neural circuits.


Assuntos
Sistema Nervoso Central , Microglia , Humanos , Neurônios/fisiologia , Sinapses/fisiologia , Macrófagos
2.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215000

RESUMO

Group A Streptococcus (GAS) infections can cause neuropsychiatric sequelae in children due to post-infectious encephalitis. Multiple GAS infections induce migration of Th17 lymphocytes from the nose into the brain, which are critical for microglial activation, blood-brain barrier (BBB) and neural circuit impairment in a mouse disease model. How endothelial cells (ECs) and microglia respond to GAS infections, and which Th17-derived cytokines are essential for these responses are unknown. Using single-cell RNA sequencing and spatial transcriptomics, we found that ECs downregulate BBB genes and microglia upregulate interferon-response, chemokine and antigen-presentation genes after GAS infections. Several microglial-derived chemokines were elevated in patient sera. Administration of a neutralizing antibody against interleukin-17A (IL-17A), but not ablation of granulocyte-macrophage colony-stimulating factor (GM-CSF) in T cells, partially rescued BBB dysfunction and microglial expression of chemokine genes. Thus, IL-17A is critical for neuropsychiatric sequelae of GAS infections and may be targeted to treat these disorders.

3.
Nat Commun ; 13(1): 7812, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535938

RESUMO

The concept of the neurovascular unit emphasizes the importance of cell-cell signaling between neural, glial, and vascular compartments. In neurogenesis, for example, brain endothelial cells play a key role by supplying trophic support to neural progenitors. Here, we describe a surprising phenomenon where brain endothelial cells may release trans-differentiation signals that convert astrocytes into neural progenitor cells in male mice after stroke. After oxygen-glucose deprivation, brain endothelial cells release microvesicles containing pro-neural factor Ascl1 that enter into astrocytes to induce their trans-differentiation into neural progenitors. In mouse models of focal cerebral ischemia, Ascl1 is upregulated in endothelium prior to astrocytic conversion into neural progenitor cells. Injecting brain endothelial-derived microvesicles amplifies the process of astrocyte trans-differentiation. Endothelial-specific overexpression of Ascl1 increases the local conversion of astrocytes into neural progenitors and improves behavioral recovery. Our findings describe an unexpected vascular-regulated mechanism of neuroplasticity that may open up therapeutic opportunities for improving outcomes after stroke.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Masculino , Camundongos , Animais , Astrócitos , Células Endoteliais , Células Cultivadas , Transdiferenciação Celular
4.
J Neurosci ; 42(32): 6171-6185, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35790400

RESUMO

Interferon regulatory factor 8 (IRF8) is a transcription factor necessary for the maturation of microglia, as well as other peripheral immune cells. It also regulates the transition of microglia and other immune cells to a pro-inflammatory phenotype. Irf8 is also a known risk gene for multiple sclerosis and lupus, and it has recently been shown to be downregulated in schizophrenia. While most studies have focused on IRF8-dependent regulation of immune cell function, little is known about how it impacts neural circuits. Here, we show by RNAseq from Irf8 -/- male and female mouse brains that several genes involved in regulation of neural activity are dysregulated. We then show that these molecular changes are reflected in heightened neural excitability and a profound increase in susceptibility to lethal seizures in male and female Irf8 -/- mice. Finally, we identify that TNF-α is elevated specifically in microglia in the CNS, and genetic or acute pharmacological blockade of TNF-α in the Irf8 -/- CNS rescued the seizure phenotype. These results provide important insights into the consequences of IRF8 signaling and TNF-α on neural circuits. Our data further suggest that neuronal function is impacted by loss of IRF8, a factor involved in neuropsychiatric and neurodegenerative diseases.SIGNIFICANCE STATEMENT Here, we identify a previously unknown and key role for interferon regulator factor 8 (IRF8) in regulating neural excitability and seizures. We further determine that these effects on neural circuits are through elevated TNF-α in the CNS. As IRF8 has most widely been studied in the context of regulating the development and inflammatory signaling in microglia and other immune cells, we have uncovered a novel function. Further, IRF8 is a risk gene for multiple sclerosis and lupus, IRF8 is dysregulated in schizophrenia, and elevated TNF-α has been identified in a multitude of neurologic conditions. Thus, elucidating these IRF8 and TNF-α-dependent effects on brain circuit function has profound implications for understanding underlying, therapeutically relevant mechanisms of disease.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Convulsões/metabolismo , Fator de Necrose Tumoral alfa , Animais , Feminino , Fatores Reguladores de Interferon/genética , Masculino , Camundongos , Esclerose Múltipla/patologia , Convulsões/patologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Nat Neurosci ; 25(4): 484-492, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314823

RESUMO

The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.


Assuntos
Bulbo Olfatório , Neurônios Receptores Olfatórios , Animais , Mamíferos , Camundongos , Odorantes , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato , Transcriptoma
6.
Front Immunol ; 13: 790002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250974

RESUMO

Stroke is one of the most prevalent diseases worldwide caused primarily by a thrombotic vascular occlusion that leads to cell death. To date, t-PA (tissue-type plasminogen activator) is the only thrombolytic therapy approved which targets fibrin as the main component of ischemic stroke thrombi. However, due to its highly restrictive criteria, t-PA is only administrated to less than 10% of all stroke patients. Furthermore, the research in neuroprotective agents has been extensive with no translational results from medical research to clinical practice up to now. Since we first described the key role of NETs (Neutrophil Extracellular Traps) in platelet-rich thrombosis, we asked, first, whether NETs participate in fibrin-rich thrombosis and, second, if NETs modulation could prevent neurological damage after stroke. To this goal, we have used the thromboembolic in situ stroke model which produces fibrin-rich thrombotic occlusion, and the permanent occlusion of the middle cerebral artery by ligature. Our results demonstrate that NETs do not have a predominant role in fibrin-rich thrombosis and, therefore, DNase-I lacks lytic effects on fibrin-rich thrombosis. Importantly, we have also found that NETs exert a deleterious effect in the acute phase of stroke in a platelet-TLR4 dependent manner and, subsequently, that its pharmacological modulation has a neuroprotective effect. Therefore, our data strongly support that the pharmacological modulation of NETs in the acute phase of stroke, could be a promising strategy to repair the brain damage in ischemic disease, independently of the type of thrombosis involved.


Assuntos
Armadilhas Extracelulares , Acidente Vascular Cerebral , Trombose , AVC Trombótico , Armadilhas Extracelulares/metabolismo , Fibrina/metabolismo , Humanos , Isquemia/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Trombose/tratamento farmacológico , Trombose/etiologia , Trombose/prevenção & controle
7.
Front Immunol ; 12: 757872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745132

RESUMO

Background and Purpose: The immune response subsequent to an ischemic stroke is a crucial factor in its physiopathology and outcome. It is known that TLR4 is implicated in brain damage and inflammation after stroke and that TLR4 absence induces neutrophil reprogramming toward a protective phenotype in brain ischemia, but the mechanisms remain unknown. We therefore asked how the lack of TLR4 modifies neutrophil function and their contribution to the inflammatory process. Methods: In order to assess the role of the neutrophilic TLR4 after stroke, mice that do not express TLR4 in myeloid cells (TLR4loxP/Lyz-cre) and its respective controls (TLR4loxP/loxP) were used. Focal cerebral ischemia was induced by occlusion of the middle cerebral artery and infarct size was measured by MRI. A combination of flow cytometry and confocal microscopy was used to assess different neutrophil characteristics (circadian fluctuation, cell surface markers, cell complexity) and functions (apoptosis, microglia engulfment, phagocytosis, NETosis, oxidative burst) in both genotypes. Results: As previously demonstrated, mice with TLR4 lacking-neutrophils had smaller infarct volumes than control mice. Our results show that the absence of TLR4 keeps neutrophils in a steady youth status that is dysregulated, at least in part, after an ischemic insult, preventing neutrophils from their normal circadian fluctuation. TLR4-lacking neutrophils showed a higher phagocytic activity in the basal state, they were preferentially engulfed by the microglia after stroke, and they produced less radical oxygen species (ROS) in the first stage of the inflammatory process. Conclusions: TLR4 is specifically involved in neutrophil dynamics under physiological conditions as well as in stroke-induced tissue damage. This research contributes to the idea that TLR4, especially when targeted in specific cell types, is a potential target for neuroprotective strategies.


Assuntos
Infarto da Artéria Cerebral Média/fisiopatologia , Neutrófilos/patologia , Receptor 4 Toll-Like/fisiologia , Animais , Apoptose , Infarto Cerebral/etiologia , Infarto Cerebral/patologia , Armadilhas Extracelulares , Infarto da Artéria Cerebral Média/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Neutrófilos/imunologia , Fagocitose , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Método Simples-Cego , Receptor 4 Toll-Like/deficiência
8.
Artif Organs ; 45(10): 1183-1188, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33560549

RESUMO

High glutamate levels after head trauma or cerebral ischemia have neurotoxic effects. The objective of the present study was to evaluate the efficacy of hemodialysis to remove glutamate from the blood and to assess the behavior of this small molecule. Ten patients with end-renal disease on hemodialysis were included in the study. Glutamate clearance was evaluated within the first hour of hemodialysis on a midweek dialysis day on five patients who underwent low flux hemodialysis, whereas the other five patients underwent highly efficient hemodialysis (high flux hemodialysis on one day and online hemodiafiltration on another day). Glutamate clearance with hemodialysis was very effective and did not show any differences between the techniques (low flux: 214 [55], high flux: 204 [37], online hemodiafiltration: 202 [16], median (interquartile range), P = .7). Glutamate clearance was almost equivalent to vascular access plasma flow and it was not affected by dialyzer permeability or ultrafiltration rate. After a hemodialysis session, a significant decrease in glutamate blood level was observed (prehemodialysis: 59.7 [36.1], posthemodialysis 37.0 [49.2], P = .005). Dialysis performed under fasting condition showed higher glutamate reduction rate (60%) than that under feeding condition (20%). Hemodialysis may be an effective method to reduce glutamate blood levels, and the molecule clearance does not differ between the different techniques used. Considering previous results in experimental models, hemodialysis without hemodynamic stress, could be considered for reducing glutamate neurotoxic effects in acute ischemic strokes of patients in chronic hemodialysis programs.


Assuntos
Ácido Glutâmico/metabolismo , Hemodiafiltração/métodos , Diálise Renal/métodos , Idoso , Isquemia Encefálica/terapia , Jejum/sangue , Feminino , Ácido Glutâmico/sangue , Humanos , AVC Isquêmico/terapia , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade
9.
Stroke ; 50(11): 3228-3237, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31526124

RESUMO

Background and Purpose- Recanalization of the occluded artery is a primary goal in stroke treatment. Unfortunately, endovascular treatment is not always available, and tPA (tissue-type plasminogen activator) therapy is limited by its narrow therapeutic window; importantly, the rate of early arterial recanalization after tPA administration is low, especially for platelet-rich thrombi. The mechanisms for this tPA resistance are not well known. Since neutrophil extracellular traps (NETs) have been implicated in this setting, our aim was to study whether NET pharmacological modulation can reverse tPA resistance and the role of TLR4 (Toll-like receptor 4), previously related to NET formation, in thrombosis. Methods- To this goal, we have used a mouse photothrombotic stroke model, which produces a fibrin-free thrombus composed primarily of aggregated platelets and thrombi obtained from human stroke patients. Results- Our results demonstrate that (1) administration of DNase-I, which promotes NETs lysis, but not of tPA, recanalizes the occluded vessel improving photothrombotic stroke outcome; (2) a preventive treatment with Cl-amidine, impeding NET formation, completely precludes thrombotic occlusion; (3) platelet TLR4 mediates NET formation after photothrombotic stroke; and (4) ex vivo fresh platelet-rich thrombi from ischemic stroke patients are effectively lysed by DNase-I. Conclusions- Hence, our data open new avenues for recanalization of platelet-rich thrombi after stroke, especially to overcome tPA resistance.


Assuntos
Desoxirribonuclease I/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Acidente Vascular Cerebral , Trombose , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Trombose/tratamento farmacológico , Trombose/metabolismo , Trombose/patologia , Receptor 4 Toll-Like/metabolismo
10.
Front Neurosci ; 13: 767, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396042

RESUMO

Tissue perfusion is a necessary condition for vessel survival that can be compromised under ischemic conditions. Following stroke, delayed effects of early brain reperfusion on the vascular substrate necessary for remodeling, perfusion and maintenance of proper peri-lesional hemodynamics are unknown. Such aspects of ischemic injury progression may be critical for neurological recovery in stroke patients. This study aims to describe the impact of early, non-thrombolytic reperfusion on the vascular brain component and its potential contribution to tissue remodeling and long-term functional recovery beyond the acute phase after stroke in 3-month-old male C57bl/6 mice. Permanent (pMCAO) and transient (60 min, tMCAO) brain ischemia mouse models were used for characterizing the effect of early, non-thrombolytic reperfusion on the brain vasculature. Analysis of different vascular parameters (vessel density, proliferation, degeneration and perfusion) revealed that, while early middle cerebral artery recanalization was not sufficient to prevent sub-acute vascular degeneration within the ischemic brain regions, brain reperfusion promoted a secondary wave of vascular remodeling in the peri-lesional regions, which led to improved perfusion of the ischemic boundaries and late-phase neurological recovery. This study concluded that acute, non-thrombolytic artery recanalization following stroke favors late-phase vascular remodeling and improves peri-lesional perfusion, contributing to secondary functional recovery.

11.
Stroke ; 50(10): 2922-2932, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451099

RESUMO

Background and Purpose- After stroke, the population of infiltrated neutrophils in the brain is heterogeneous, including a population of alternative neutrophils (N2) that express M2 phenotype markers. We explored the role of TLR4 (toll-like receptor 4) on neutrophil infiltration and polarization in this setting. Methods- Focal cerebral ischemia was induced by occlusion of the middle cerebral artery occlusion in TLR4-KO and WT (wild type) mice. Infarct size was measured by Nissl staining and magnetic resonance imaging. Leukocyte infiltration was quantified 48 hours after middle cerebral artery occlusion by immunofluorescence and flow cytometry. To elucidate mechanisms underlying TLR4-mediated N2 phenotype, a cDNA microarray analysis was performed in neutrophils isolated from blood 48 hours after stroke in WT and TLR4-KO mice. Results- As demonstrated previously, TLR4-deficient mice presented lesser infarct volumes than WT mice. TLR4-deficient mice showed higher density of infiltrated neutrophils 48 hours after stroke compared with WT mice, concomitantly to neuroprotection. Furthermore, cytometric and stereological analyses revealed an increased number of N2 neutrophils (YM1+ cells) into the ischemic core in TLR4-deficient mice, suggesting a protective effect of this neutrophil subset that was corroborated by depleting peripheral neutrophils or using mice with TLR4 genetically ablated in the myeloid lineage. Finally, cDNA microarray analysis in neutrophils, confirmed by quantitative polymerase chain reaction, showed that TLR4 modulates several pathways associated with ischemia-induced inflammation, migration of neutrophils into the parenchyma, and their functional priming, which might explain the opposite effect on outcome of the different neutrophil subsets. Conclusions- TLR4 deficiency increased the levels of alternative neutrophils (N2)-an effect associated with neuroprotection after stroke-supporting that modulation of neutrophil polarization is a major target of TLR4 and highlighting the crucial role of TLR4 at the peripheral level after stroke. Visual Overview- An online visual overview is available for this article.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Fenótipo
12.
J Clin Invest ; 129(4): 1536-1550, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30676325

RESUMO

Poststroke cognitive impairment is considered one of the main complications during the chronic phase of ischemic stroke. In the adult brain, the hippocampus regulates both encoding and retrieval of new information through adult neurogenesis. Nevertheless, the lack of predictive models and studies based on the forgetting processes hinders the understanding of memory alterations after stroke. Our aim was to explore whether poststroke neurogenesis participates in the development of long-term memory impairment. Here, we show a hippocampal neurogenesis burst that persisted 1 month after stroke and that correlated with an impaired contextual and spatial memory performance. Furthermore, we demonstrate that the enhancement of hippocampal neurogenesis after stroke by physical activity or memantine treatment weakened existing memories. More importantly, stroke-induced newborn neurons promoted an aberrant hippocampal circuitry remodeling with differential features at ipsi- and contralesional levels. Strikingly, inhibition of stroke-induced hippocampal neurogenesis by temozolomide treatment or using a genetic approach (Nestin-CreERT2/NSE-DTA mice) impeded the forgetting of old memories. These results suggest that hippocampal neurogenesis modulation could be considered as a potential approach for treatment of poststroke cognitive impairment.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Hipocampo/metabolismo , Neurogênese/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Temozolomida/farmacologia , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
13.
J Cereb Blood Flow Metab ; 38(12): 2150-2164, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30129391

RESUMO

Ischemic brain injury causes a local inflammatory response, involving the activation of resident brain cells such as microglia and the recruitment of infiltrating immune cells. Increasing evidence supports that plasticity of the myeloid cell lineage is determinant for the specific role of these cells on stroke outcome, from initiation and maintenance to resolution of post-ischemic inflammation. The aim of this review is to summarize some of the key characteristics of these cells and the mechanisms for their recruitment into the injured brain through interactions with platelets, endothelial cells and other leukocytes. Also, we discuss the existence of different leukocyte subsets in the ischemic tissue and, specifically, the impact of different myeloid phenotypes on stroke outcome, with special emphasis on neutrophils and their interplay with platelets. Knowledge of these cellular phenotypes and interactions may pave the way to new therapies able to promote protective immune responses and tissue repair after cerebral ischemia.


Assuntos
Células Mieloides/patologia , Neuroimunomodulação/fisiologia , Acidente Vascular Cerebral/patologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Células Mieloides/imunologia , Acidente Vascular Cerebral/imunologia
14.
Stroke ; 48(6): 1695-1699, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28428349

RESUMO

BACKGROUND AND PURPOSE: Hemorrhagic transformation is the main complication of revascularization therapies after stroke. Toll-like receptor 4 (TLR4) is implicated in cerebral damage and inflammation in stroke. This study was designed to determine the role of TLR4 in hemorrhagic transformation development after tissue plasminogen activator (tPA) administration. METHODS: Mice expressing (TLR4+/+) or lacking functional TLR4 (TLR4-/-) were subjected to middle cerebral artery occlusion using an in situ thromboembolic model by thrombin injection into the middle cerebral artery, and tPA (10 mg/kg) was administered 20 minutes or 3 hours after ischemia. Infarct size, hemorrhages, IgG extravasation, matrix metalloproteinase 9 expression, and neutrophil infiltration were assessed 24 hours after ischemia. RESULTS: In TLR4+/+, early reperfusion (tPA at 20 minutes) resulted infarct volume, whereas late recanalization (tPA at 3 hours) did not modify lesion size and increased the rate of the most severe hemorrhages. In TLR4-/- mice, both early and late reperfusion did not modify lesion size. Importantly, late tPA administration did not result in worse hemorrhages and in an increased bleeding area as occurred in TLR4+/+ group. In TLR4-/- animals, late reperfusion produced a lesser increase in matrix metalloproteinase 9 expression when compared with TLR4+/+ animals. CONCLUSIONS: Our results demonstrate TLR4 involvement in hemorrhagic transformation induced by delayed tPA administration, very likely by increasing matrix metalloproteinase 9 expression.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Fibrinolíticos/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Hemorragia Cerebral/induzido quimicamente , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/metabolismo , Modelos Animais de Doenças , Fibrinolíticos/administração & dosagem , Infarto da Artéria Cerebral Média/complicações , Embolia Intracraniana/complicações , Trombose Intracraniana/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Fatores de Tempo , Ativador de Plasminogênio Tecidual/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...