Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(16): 13900-8, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25054867

RESUMO

The understanding that common broad-spectrum antimicrobials disrupt natural microbial flora important in acquiring nutrients and preventing infection has resulted in a paradigm shift favoring more selective antimicrobials. This work explores silver nanoparticles conjugated with ceragenin, or cationic antimicrobials (CSA-SNPs), as a potential Gram-positive selective antimicrobial. Herein, CSA-SNPs are characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, and high-performance liquid chromatography-electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS). The antimicrobial properties are determined through minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) and time-kill studies. Spatial selectivity of the conjugate nanoparticle was evaluated using confocal imaging, MATLAB statistical analysis, and video monitored interactions between bacteria and CSA-SNPs via laser trapping techniques. Cytotoxicity was also determined by live/dead staining and flow cytometry. Average particle size, as determined through TEM analysis, and hydrodynamic diameter, as determined via DLS, are 63.5 ± 38.8 and 102.23 ± 2.3 nm, respectively. The zeta potential of the SNP before and after CSA attachment is -18.23 and -8.34 mV, respectively. MIC/MBC data suggest that CSA-SNPs are 8 times more effective against Staphylococcus aureus than SNPs alone. Furthermore, MATLAB analysis of confocal imaging found that 70% of CSA-SNPs are within 2 µm of S. aureus, whereas this percentage falls to below 40% with respect to Escherichia coli. These results are bolstered further by laser trapping experiments demonstrating selective adherence of CSA-SNPs conjugates with bacterial strains. Cytotoxicity studies of CSA-SNPs against 3T3 fibroblasts indicate 50% cell viability at 50 ppm.


Assuntos
Anti-Infecciosos/química , Nanopartículas Metálicas/química , Prata/química , Esteroides/química , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Staphylococcus aureus/efeitos dos fármacos
2.
ACS Nano ; 6(2): 1134-41, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22206349

RESUMO

MscL is a bacterial mechanosensitive channel that protects cells from lysis upon acute decrease in external osmotic environment. It is one of the best characterized mechanosensors known, thus serving as a paradigm of how such molecules sense and respond to stimuli. In addition, the fact that it can be genetically modified, expressed, isolated, and manipulated has led to its proposed use as a triggered nanovalve for various functions including sensors within microelectronic array chips, as well as vesicular-based targeted drug release. X-ray crystallography reveals a homopentameric complex with each subunit containing two transmembrane α-helices (TM1 and TM2) and a single carboxyl terminal α-helix arranging within the complex to form a 5-fold cytoplasmic bundle (CB), whose function and stability remain unclear. In this study, we show three routes that throttle the open channel conductance. When the linker between the TM2 and CB domain is shortened by deletions or constrained by either cross-linking or heavy metal coordination, the conductance of the channel is reduced; in the later two cases, even reversibly. While they have implications for the stability of the CB, these data also provide routes for engineering MscL sensors that are more versatile for potential nanotech devices.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Canais Iônicos/química , Canais Iônicos/genética , Nanotecnologia/instrumentação , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli/citologia , Proteínas de Escherichia coli/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Metais Pesados/metabolismo , Modelos Moleculares , Porosidade , Estrutura Secundária de Proteína
3.
Langmuir ; 26(6): 4103-12, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20020725

RESUMO

Bee venom phospholipase A(2) (bvPLA(2)) is part of the secretory phospholipase A(2) (sPLA(2)) family whose members are active in biological processes such as signal transduction and lipid metabolism. While controlling sPLA(2) activity is of pharmaceutical interest, the relationship between their mechanistic actions and physiological functions is not well understood. Therefore, we investigated the interfacial binding process of bvPLA(2) to characterize its biophysical properties and gain insight into how membrane binding affects interfacial activation. Attention was focused on the role of membrane electrostatics in the binding process. Although dynamic light scattering experiments indicated that bvPLA(2) does not lyse lipid vesicles, a novel, nonhydrolytic activity was discovered. We employed a supported lipid bilayer platform on the quartz crystal microbalance with dissipation sensor to characterize this bilayer-disrupting behavior and determined that membrane electrostatics influence this activity. The data suggest that (1) adsorption of bvPLA(2) to model membranes is not primarily driven by electrostatic interactions; (2) lipid desorption can follow bvPLA(2) adsorption, resulting in nonhydrolytic bilayer-disruption; and (3) this desorption is driven by electrostatic interactions. Taken together, these findings provide evidence that interfacial binding of bvPLA(2) is a dynamic process, shedding light on how membrane electrostatics can modulate interfacial activation.


Assuntos
Venenos de Abelha/enzimologia , Fosfolipases A2/metabolismo , Quartzo , Luz , Bicamadas Lipídicas , Espalhamento de Radiação , Eletricidade Estática
4.
Nanotechnology ; 21(5): 055703, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20023306

RESUMO

Hybrid organic-inorganic templates and core-shell nanoparticles were used as models to study the communication between fluorescent probes placed inside nanoparticles. The hybrid templates were prepared on the basis of a mixed-surfactant system using octadecyltrimethoxysilane as a reactive amphiphile. The core-shell particles were obtained after coating of the templates with a siloxane shell, using the silanol groups on their surface. Atomic force microscopy imaging showed that the templates were made of a flexible material that flattened significantly after deposition on a substrate and evaporation of the solvent. Pyrene was sequestered by the templates in an aqueous suspension, which placed it in a nonpolar environment, as observed by its fluorescence response. Subsequently, double-doped templates were prepared by sequestering coumarin 153 (C153), with pyrene-doped hybrid templates. The communication between these probes was studied on the basis of their spectral properties, by means of fluorescence resonance energy transfer (FRET). Energy transfer between the dyes with efficiencies up to 55% was observed. Similarly, double-doped core-shell particles prepared on the basis of the hybrid templates were doped with this pair of dyes. Despite the presence of the shell, which was intended to increment the average separation between the probes, interaction of the dyes was observed, although with lower efficiencies. A similar study was performed with C153 and 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM). FRET studies indicated that the probes were placed in proximity to each other. We confirmed these observations by means of fluorescence lifetime measurements, which showed a decrease in the lifetime of the donor upon addition of the acceptor.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Nanopartículas/química , Titânio/química , Fluorescência , Corantes Fluorescentes/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Difração de Raios X
5.
Colloids Surf B Biointerfaces ; 65(2): 178-85, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18602253

RESUMO

S-layer proteins are commonly found in bacteria and archaea as two-dimensional monomolecular crystalline arrays as the outermost cell membrane component. These proteins have the unique property that following disruption by chemical agents, monomers of the protein can re-assemble to their original lattice structure. This unique property makes S-layers interesting for utilization in bio-nanotechnological applications. Here, we show that the addition of S-layer proteins to bilayer lipid membranes increases the lifetime and the stability of the bilayer. M2delta ion channels were functionally incorporated into these S-layer stabilized membranes and we were able to record their activity for up to 20 h. Transmission electron microscopy (TEM) was used to visualize the 2D crystalline pattern of the S-layer and the M2delta ion channel characteristics in bilayer lipid membrane's were compared in the presence and absence of S-layers.


Assuntos
Proteínas de Bactérias/química , Canais Iônicos/fisiologia , Bicamadas Lipídicas , Glicoproteínas de Membrana/química , Sequência de Aminoácidos , Cristalização , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Processos Estocásticos
6.
Langmuir ; 24(7): 3532-6, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18312010

RESUMO

Using a water-in-oil microemulsion system, silica nanoparticles containing superparamagnetic iron oxide (SPIO) crystals have been prepared and characterized. With this method, the loading of iron oxide crystals, the thickness of the silica shells, and the overall particle sizes are tunable. Moving from low to high water concentration, within the microemulsion region, resulted in a gradual shift from larger particles, ca. 100 nm and fully loaded with SPIOs, to smaller particles, ca. 30 nm containing only one or a few SPIOs. By varying the amount of silica precursor, the thickness of the silica shell was altered. Field dependent magnetization measurements showed the magnetic properties of the SPIOs were preserved after the synthesis.

7.
Langmuir ; 24(5): 2064-71, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18220429

RESUMO

Core-shell nanocapsules intended to be used as drug scavengers were prepared using a surfactant mixture containing octadecyltrimethoxysilane (OTMS) as a reactive amphiphile, to form spherical templates. A siloxane shell was grown on the surface of the templates by reacting tetramethoxysilane (TMOS) with the silanol groups obtained after the hydrolysis and condensation of OTMS. Dynamic light scattering (DLS) showed that particles with diameters in the range of 100-200 nm were obtained, with core and shell sizes controlled by varying component compositions. Atomic force microscopy (AFM) was used to study the effect of the silica coating of the templates on their robustness after deposition on a substrate. Subsequently, we present studies on the encapsulation of two hydrophobic fluorescent dyes, which are sensors of polarity and rigidity. Steady-state fluorescence spectroscopy was used to examine the fluorescence response of the dyes before and after shell growth. Changes in the emission of the encapsulated dyes were related to changes in the polarity and rigidity of the microenvironment where the dyes were located and correlated to the AFM results. Finally, dye-free core-shell particles were used to sequester the dyes from aqueous suspensions. Fluorescence of the sequestered species was compared to the dye-loaded particles to determine the final fate of the fluorophores in the nanoparticles.

8.
Biosens Bioelectron ; 23(6): 919-23, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17996439

RESUMO

The mechanosensitive (MS) ion channel is gated by changes in bilayer deformation. It is functional without the presence of any other proteins and gating of the channel has been successfully achieved using conventional patch clamping techniques where a voltage has been applied together with a pressure over the membrane. Here, we have for the first time analyzed the large conducting (MscL) channel in a supported membrane using only an external electrical field. This was made possible using a newly developed technique utilizing a tethered lipid bilayer membrane (tBLM), which is part of an engineered microelectronic array chip. Single ion channel activity characteristic for MscL was obtained, albeit with lower conductivity. The ion channel was gated using solely a transmembrane potential of 300 mV. Computations demonstrate that this amount of membrane potential induces a membrane tension of 12 dyn/cm, equivalent to that calculated to gate the channel in patch clamp from pressure-induced stretching of the bilayer. These results strengthen the supposition that the MscL ion channel gates in response to stress in the lipid membrane rather than pressure across it. Furthermore, these findings illustrate the possibility of using the MscL as a release valve for engineered membrane devices; one step closer to mimicking the true function of the living cell.


Assuntos
Proteínas de Escherichia coli/fisiologia , Ativação do Canal Iônico , Canais Iônicos/fisiologia , Bicamadas Lipídicas/química , Mecanotransdução Celular/fisiologia , Condutividade Elétrica , Proteínas de Escherichia coli/química , Canais Iônicos/química , Pressão , Estresse Mecânico
10.
Langmuir ; 23(13): 7344-55, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17503853

RESUMO

Recently, tethered bilayer lipid membranes (tBLMs) have shown high potential as biomimetic systems due to their high stability and electrical properties, and have been used in applications ranging from membrane protein incorporation to biosensors. However, the kinetics of their formation remains largely uninvestigated. By using quartz crystal microbalance with impedance analysis (QCM-Z), we were able to monitor both the kinetics and viscoelastic properties of tether adsorption and vesicle fusion. Formation of the tether monolayer was shown to follow pseudo-first-order Langmuir kinetics with association and dissociation rate constants of 21.7 M-1 s(-1) and 7.43 x 10-6 s(-1), respectively. Moreover, the QCM-Z results indicate a rigid layer at the height of deposition, which then undergoes swelling as indicated by AFM. The deposition of vesicles to the tether layer also followed pseudo-first-order Langmuir kinetics with observed rate constants of 5.58 x 10(-2) and 2.41 x 10-2 s(-1) in water and buffer, respectively. Differential analysis of the QCM-Z data indicated deposition to be the fast kinetic step, with the rate-limiting steps being water release and fusion. Atomic force microscopy pictures taken complement the QCM-Z data, showing the major stages of tether adsorption and vesicle fusion, while providing a road map to successful tBLM formation.


Assuntos
Ouro/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Elasticidade , Impedância Elétrica , Cinética , Propriedades de Superfície
11.
J Colloid Interface Sci ; 311(1): 315-21, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17368661

RESUMO

A novel approach to two-dimensionally crosslink polydienes at the air/water interface is proposed. The acid-catalyzed condensation of the triethoxysilane pendant groups of triethoxysilane-functionalized polybutadiene chains at the air/water interface successfully led to the formation of an insoluble crosslinked material which could be directly removed from the water surface. The efficiency of the cross-linking reaction was demonstrated through surface pressure measurements such as surface pressure-mean molecular area isotherms recorded at different reaction times and isobar experiments for different subphase pH values. The evolution of the monolayer topography during cross-linking was studied by atomic force microscopy imaging of the Langmuir-Blodgett films.


Assuntos
Butadienos/química , Reagentes de Ligações Cruzadas/química , Elastômeros/química , Polímeros/química , Silanos/química , Ar , Concentração de Íons de Hidrogênio , Hidrólise , Estrutura Molecular , Propriedades de Superfície , Água/química
12.
Langmuir ; 23(5): 2531-8, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17309207

RESUMO

The two-dimensional self-assembly at the air/water (A/W) interface of two dendrimer-like copolymers based on polystyrene and poly(tert-butyl acrylate) (PS-b-PtBA) or poly(acrylic acid) (PS-b-PAA) was investigated through surface pressure measurements (isotherms, isochores, and compression-expansion hysteresis experiments) and atomic force microscopy (AFM) imaging. The two dendrimer-like block copolymers have an 8-arm PS core (Mn = 10 000 g/mol, approximately 12 styrene repeat units per arm) with a 16-arm PtBA (Mn = 230 000 g/mol, approximately 112 tert-butyl acrylate repeat units per arm) or PAA (Mn = 129 000 g/mol, approximately 112 acrylic acid repeat units per arm) corona. The PS-b-PtBA sample forms stable Langmuir monolayers and aggregates into circular surface micelles up to a plateau observed in the corresponding isotherm around 24 mN/m. Beyond this threshold, the monolayers collapse above the interface, resulting in the formation of large and irregular desorbed aggregates. The PS-b-PAA sample has ionizable carboxylic acid groups, and its A/W interfacial self-assembly was therefore investigated for various subphase pH values. Under basic conditions (pH = 11), the carboxylic acid groups are deprotonated, and the PS-b-PAA sample is therefore highly water-soluble and does not form stable monolayers, instead irreversibly dissolving in the aqueous subphase. Under acidic conditions (pH = 2.5), the PS-b-PAA sample is less water-soluble and becomes surface-active. The pseudoplateau observed in the isotherm around 5 mN/m corresponds to a pancake-to-brush transition with the PAA chains dissolving in the water subphase and stretching underneath the anchoring PS cores. AFM imaging revealed the presence of circular surface micelles for low surface pressures, whereas the biphasic nature of the pseudoplateau region was confirmed with the gradual aggregation of the micellar PS cores above the PAA chains. The aggregation numbers for both samples were estimated around 3-5 dendrimer-like copolymers per circular surface micelle. These rather low values confirmed the tremendous influence of molecular architecture on the two-dimensional self-assembly of block copolymers.

13.
Langmuir ; 23(6): 2924-7, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17286424

RESUMO

Membrane-bound ion channels are promising biological receptors since they allow for the stochastic detection of analytes at high sensitivity. For stochastic sensing, it is necessary to measure the ion currents associated with single ion channel opening and closing events. However, this calls for stability, high reproducibility, and long lifetimes. A critical issue to overcome is the low stability of the ion channel environment, that is, the bilayer membrane. A promising technique to surmount this is to connect the lower part of the membrane to a surface forming a tethered bilayer membrane. By reconstituting the synthetic ion channel, gramicidin A, into a tethered bilayer as part of a microchip design, we have been able to record the activity of single ion channels. The observed activity was compared with that obtained by a conventional electrophysiology method, tip dipping, to confirm its authenticity. These findings allow for the construction of stable biosensors based on ion channels and provide a novel technique for the characterization of ion channel activity.


Assuntos
Eletroquímica/instrumentação , Canais Iônicos/química , Bicamadas Lipídicas/química , Archaea/metabolismo , Bacillus/metabolismo , Eletroquímica/métodos , Eletrodos , Eletrofisiologia/instrumentação , Ouro/química , Gramicidina/química , Íons , Potenciais da Membrana , Modelos Químicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processos Estocásticos
14.
Langmuir ; 23(2): 649-58, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17209616

RESUMO

Two-dimensional polymeric nanomaterials consisting of a continuously cross-linked polybutadiene (PB) two-dimensional network with poly(ethylene oxide) (PEO) domains of controlled sizes trapped within the PB network were synthesized. To reach that goal, novel (PB(Si(OEt)3)-b-PEO)3 star block copolymers were designed by hydrosilylation of the pendant double bonds of (PB-b-PEO)3 star block copolymer precursors with triethoxysilane. The (PB(Si(OEt)3)-b-PEO)3 star block copolymers were characterized by 1H NMR and IR spectroscopy. Self-condensation of the triethoxysilane pendant groups under acidic conditions led to a successful cross-linking of the polybutadiene blocks directly at the air/water interface without any additives or reagents. This strategy was found more efficient than radical cross-linking of (PB-b-PEO)3 with AIBN to get a homogeneously cross-linked monolayer of controlled and fixed morphology as demonstrated by the easy mechanical removal of the cross-linked Langmuir film from the water surface. As shown by AFM imaging, this strategy allows the accurate control of the PEO "pore" size depending on the monolayer surface pressure applied during the cross-linking reaction. The subphase pH and surface pressure influence on the cross-linking kinetics and monolayer morphologies were investigated by Langmuir trough studies (isotherm and isobar experiments) and AFM imaging.

15.
Langmuir ; 23(5): 2423-9, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17243736

RESUMO

The interfacial properties of amphiphilic linear diblock copolymers based on poly(ethylene oxide) and poly(epsilon-caprolactone) (PEO-b-PCL) were studied at the air-water (A/W) interface by surface pressure measurements (isotherms and hysteresis experiments). The resulting Langmuir monolayers were transferred onto mica substrates and the Langmuir-Blodgett (LB) film morphologies were investigated by atomic force microscopy (AFM). All block copolymers had the same PEO segment (Mn = 2670 g/mol) and different PCL chain lengths (Mn = 1270; 2110; 3110 and 4010 g/mol). Isothermal characterization of the block copolymer samples indicated the presence of three distinct phase transitions around 6.5, 10.5, and 13.5 mN/m. The phase transitions at 6.5 and 13.5 mN/m correspond to the dissolution of the PEO segments in the water subphase and crystallization of the PCL blocks above the interface similarly as for the corresponding homopolymers, respectively. The phase transition at 10.5 mN/m was not observed for the homopolymers alone or for their blends and arises from a brush formation of the PEO segments anchored underneath the adsorbed hydrophobic PCL segments. AFM analysis confirmed the presence of PCL crystals in the LB films with unusual hairlike/needlelike architectures significantly different from those obtained for PCL homopolymers.


Assuntos
Físico-Química/métodos , Poliésteres/química , Polímeros/química , Água/química , Ar , Micelas , Microscopia de Força Atômica , Modelos Químicos , Conformação Molecular , Polietilenoglicóis , Pressão , Soluções , Propriedades de Superfície
16.
Langmuir ; 22(21): 8684-9, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17014105

RESUMO

Oil-filled silica nanocapsules consisting of a hydrophobic liquid core and a silicate shell have been shown to efficiently extract hydrophobic compounds from aqueous media. With a view toward quantifying the selectivity of these systems, a series of electrochemical and spectroscopic measurements was performed. Uptake and kinetics experiments were carried out through electrochemical measurements by using solutions of lipophilic electroactive molecules of different sizes and with different affinities for silica. Other solutions with fluorescent probes were used for spectrophotometry measurements. In this work we report the environment where the lipophilic compounds studied end up after absorption and the kinetics of their uptake by the oil-filled silica nanocapsules with different shell thicknesses.

17.
Langmuir ; 22(22): 9264-71, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17042541

RESUMO

Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.


Assuntos
Poliésteres/química , Óxido de Etileno/química , Microscopia de Força Atômica , Estrutura Molecular
18.
Biomacromolecules ; 7(3): 945-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16529435

RESUMO

In this article we present the synthesis of oil core silica shell nanocapsules with different shell thicknesses. The surface of the nanocapsules was modified with polyethyleoxide (PEO) and succinic anhydride. Two biomedical tests were then used to study the biocompatibility properties of these nanocapsules with different surface treatments, hemolysis and thromboelastography (TEG). PEO surface modification greatly reduced the damaging interactions of nanocapsules with red blood cells (RBCs) and platelets and attenuated particle size effects. It was found that the blood toxicity of charged particles increased with the acid strength on the surface. Experiments toward the assessment of detoxification of these nanocapsules in model drug overdose concentrations are currently underway.


Assuntos
Materiais Biocompatíveis/química , Nanoestruturas/química , Dióxido de Silício/química , Animais , Células Sanguíneas/metabolismo , Células Sanguíneas/ultraestrutura , Plaquetas/metabolismo , Eritrócitos/metabolismo , Hemólise , Humanos , Nanotecnologia/métodos , Polietilenoglicóis/química , Propriedades de Superfície , Tromboelastografia
19.
J Colloid Interface Sci ; 299(1): 182-90, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16500670

RESUMO

Colloidal interaction forces between a silica particle and a solid-supported Langmuir-Schaefer phospholipid bilayer were directly measured using a gradient optical trap and evanescent wave light scattering. A small custom-built Langmuir trough was integrated with an optical trapping microscope to allow force measurements on a single particle within the subphase of the trough after the dip of the substrate was completed. The novel method allows the force measurements to be conducted without transferring the substratum across an air/water interface. The fluctuating particle position near the bilayer was tracked by evanescent wave light scattering to determine the deflection due to surface forces, and the relaxation time of particle fluctuations was measured to simultaneously determine the viscous forces. Measured equilibrium and viscous force-distance profiles of silica microspheres with diameters of 1 and 5 microm on bilayers of dipalmitoyl phosphatidyl choline (DPPC) were markedly different than force-distance on bare mica and DPPC monolayers under the same electrolyte conditions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Microesferas , Transição de Fase , Dióxido de Silício/química , Coloides , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
20.
Biophys J ; 89(3): 1780-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16127170

RESUMO

Tethered membranes have been proven during recent years to be a powerful and flexible biomimetic platform. We reported in a previous article on the design of a new architecture based on the self-assembly of a thiolipid on ultrasmooth gold substrates, which shows extremely good electrical sealing properties as well as functionality of a bilayer membrane. Here, we describe the synthesis of lipids for a more modular design and the adaptation of the linker part to silane chemistry. We were able to form a functional tethered bilayer lipid membrane with good electrical sealing properties covering a silicon oxide surface. We demonstrate the functional incorporation of the ion carrier valinomycin and of the ion channel gramicidin.


Assuntos
Biofísica/métodos , Canais Iônicos/química , Bicamadas Lipídicas/química , Lipídeos/química , Análise Serial de Proteínas/métodos , Silanos/química , Dióxido de Silício/química , Impedância Elétrica , Eletroquímica , Ouro/química , Gramicidina/farmacologia , Ionóforos/farmacologia , Íons , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Modelos Químicos , Fosfatidilcolinas/química , Fitol/química , Silanos/metabolismo , Silício/química , Espectrofotometria , Especificidade por Substrato , Temperatura , Fatores de Tempo , Valinomicina/química , Valinomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA