Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(2-2): 025103, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723779

RESUMO

We study the self-organization of spherical particles in an oscillating flow through experiments inside an oscillating box. The interactions between the particles and the time-averaged (steady streaming) flow lead to the formation of either one-particle-thick chains or multiple-particle-wide bands, depending on the oscillatory conditions. Both the chains and the bands are oriented perpendicular to the direction of oscillation with a regular spacing between them. For all our experiments, this spacing is only a function of the relative particle-fluid excursion length normalized by the particle diameter, A_{r}/D, implying that it is an intrinsic quantity that is established only by the hydrodynamics. In contrast, the width of the bands depends on both A_{r}/D and the confinement, characterized by the particle coverage fraction ϕ. Using the relation for the chain spacing, we accurately predict the transition from one-particle-thick chains to wider bands as a function of ϕ and A_{r}/D. Our experimental results are complemented with numerical simulations in which the flow around the particles is fully resolved. These simulations show that the regular chain spacing arises from the balance between long-range attractive and short-range repulsive hydrodynamic interactions, caused by the vortices in the steady streaming flow. We further show that these vortices induce an additional attractive interaction at very short range when A_{r}/D≳0.7, which stabilizes the multiple-particle-wide bands. Finally, we give a comprehensive overview of the parameter space where we illustrate the different regions using our experimental data.

2.
Phys Rev E ; 99(3-1): 033105, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999540

RESUMO

We present results of laboratory experiments on the formation, evolution, and wavelength selection of vortex ripples. These ripples formed on a sediment bed at the bottom of a water-filled oscillating cylindrical tank mounted on top of a rotating table. The table is made to oscillate sinusoidally in time, while a constant background rotation was added for some experiments. The changes in bed thickness are measured using a light attenuation technique. It was found that the wavelength normalized with the excursion length depends on both a Reynolds number and the Strouhal number. This differs from straight or annular geometries where the wavelength is proportional to the excursion length. The flow in an oscillating cylinder has the peculiarity that it develops a secondary flow in the radial direction that depends on the excursion length. The effect of this secondary circulation is evident in the radial transport for small values of the Strouhal number or in the orientation of the ripples for strong enough background rotation. Additionally, ripples in an oscillating cylinder present a rich dynamic behavior where the number of ripples can oscillate even with constant forcing parameters.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(1 Pt 2): 016306, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21405773

RESUMO

A dipolar flow structure is experimentally studied in a layer of salt solution driven by time-independent electromagnetic forcing. In particular, the response of the flow to the forcing is quantified by measuring the Reynolds number Re as a function of the Chandrasekhar number Ch (the ratio of Lorentz forces to viscous forces) and δ (the ratio of vertical to horizontal length scales of the flow domain). In agreement with theoretical predictions, two scaling regimes are found: Re~Ch/π(2) (viscous regime) and Re~Ch(1/2)δ(-1) (advective regime). The transition between the two regimes at Ch(1/2)δ~π(2) is reflected in the flow geometry in the form of an asymmetry of the dipolar flow structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...