Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 697: 269-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38816126

RESUMO

The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.


Assuntos
Amiloide , Nucleotídeos , Hidrólise , Amiloide/química , Amiloide/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Domínio Catalítico , Sequência de Aminoácidos , Catálise , Biocatálise
2.
Langmuir ; 40(12): 6094-6106, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470353

RESUMO

Rational design of peptides has become a powerful tool to produce self-assembled nanostructures with the ability to catalyze different chemical reactions, paving the way to develop minimalistic enzyme-like nanomaterials. Catalytic amyloid-like assemblies have emerged among the most versatile and active, but they often require additional factors for activity. Elucidating how these factors influence the structure and activity is key for the design. Here, we showed that biologically relevant metal ions can guide and modulate the self-assembly of a small peptide into diverse amyloid architectures. The morphology and catalytic activity of the resulting fibrils were tuned by the specific metal ion decorating the surface, whereas X-ray structural analysis of the amyloids showed ion-dependent shape sizes. Molecular dynamics simulations showed that the metals can strongly affect the local conformational space, which can trigger major rearrangements of the fibrils. Our results demonstrate that the conformational landscape of catalytic amyloids is broad and tunable by external factors, which can be critical for future design strategies.


Assuntos
Amiloide , Peptídeos , Amiloide/química , Peptídeos/química , Metais/química , Proteínas Amiloidogênicas , Íons
3.
Methods Mol Biol ; 2538: 207-216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951302

RESUMO

The amyloid fold is nowadays recognized as an alternative conformation accessible to different proteins and peptides. The highly stable and ordered structural organization of amyloid fibrils can be exploited for the design of novel nanomaterials with emergent properties. Recent works have demonstrated that the functional features of the active site of enzymes can be partially recreated using this fold as a scaffold to develop catalytically active amyloids. We describe in this chapter a protocol to design functionally active amyloids that emerge from the self-assembly in vitro of synthetic peptides with sequences based on the active site of enzymes. Using this protocol, we show the development of amyloids that catalyze the metal-dependent hydrolysis of the phosphoanhydride bonds of nucleoside triphosphates.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Amiloide/química , Proteínas Amiloidogênicas/química , Catálise , Domínio Catalítico , Peptídeos/química
4.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502074

RESUMO

Amyloids are supramolecular assemblies composed of polypeptides stabilized by an intermolecular beta-sheet core. These misfolded conformations have been traditionally associated with pathological conditions such as Alzheimer's and Parkinson´s diseases. However, this classical paradigm has changed in the last decade since the discovery that the amyloid state represents a universal alternative fold accessible to virtually any polypeptide chain. Moreover, recent findings have demonstrated that the amyloid fold can serve as catalytic scaffolds, creating new opportunities for the design of novel active bionanomaterials. Here, we review the latest advances in this area, with particular emphasis on the design and development of catalytic amyloids that exhibit hydrolytic activities. To date, three different types of activities have been demonstrated: esterase, phosphoesterase and di-phosphohydrolase. These artificial hydrolases emerge upon the self-assembly of small peptides into amyloids, giving rise to catalytically active surfaces. The highly stable nature of the amyloid fold can provide an attractive alternative for the design of future synthetic hydrolases with diverse applications in the industry, such as the in situ decontamination of xenobiotics.


Assuntos
Amiloide/química , Hidrolases/química , Amiloide/síntese química , Amiloide/metabolismo , Animais , Domínio Catalítico , Humanos , Hidrolases/síntese química , Hidrolases/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1865(1): 129729, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916204

RESUMO

BACKGROUND: Amyloids are highly ordered polypeptide aggregates stabilized by a beta-sheet structural core. Though classically associated to pathology, reports on novel functional roles of these proteins have increasingly emerged in the past decade. Moreover, the recent discovery that amyloids formed with rationally designed small peptides can exhibit catalytic reactivity has opened up new opportunities in both biology and biotechnology. The observed activities typically require the binding of divalent metals, giving rise to active metal-amyloid complexes. METHODS: Peptide (SDIDVFI) was aggregated in vitro. The structure of the self-assembled species was analyzed using fluorescence, transmission electron microscopy, circular dichroism and computational modeling. A kinetic characterization of the emerging catalytic activity was performed. RESULTS: The peptide self-assembled into canonical amyloids that exhibited catalytic activity towards hydrolysis of the phosphoanhydride bonds of adenosine triphosphate (ATP), partially mimicking an ATPase-like enzyme. Both amyloid formation and activity are shown to depend on manganese (Mn2+) binding. The activity was not restricted to ATP but also affected all other ribonucleotides (GTP, CTP and UTP). Peptides carrying a single aspartate exhibited a similar activity. CONCLUSIONS: The phosphoanhydride bonds appear as the main specificity target of the Mn2+-amyloid complex. A single aspartate per peptide is sufficient to enable the hydrolytic activity. GENERAL SIGNIFICANCE: Catalytic amyloids are shown for the first time to catalyze the hydrolysis of all four ribonucleotides. Our results should contribute towards understanding the biological implications of amyloid-mediated reactivity as well as in the design of future catalytic amyloids for biotechnological applications.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Amiloide/metabolismo , Peptídeos/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Amiloide/química , Amiloide/ultraestrutura , Hidrólise , Modelos Moleculares , Peptídeos/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...