Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2013: 317120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737644

RESUMO

Advanced glycation end products (AGEs) might play a pathophysiological role in the development of diabetes and its complications. AGEs negatively affect pancreatic beta-cell function and the expression of transcriptional factors regulating insulin gene. Glucagon-like peptide-1 (GLP-1), an incretin hormone that regulates glucose homeostasis, might counteract the harmful effects of AGEs on the beta cells in culture. The aim of this study was to identify the intracellular mechanisms underlying GLP-1-mediated protection from AGE-induced detrimental activities in pancreatic beta cells. HIT-T15 cells were cultured for 5 days with glycated serum (GS, consisting in a pool of AGEs), in the presence or absence of 10 nmol/L GLP-1. After evaluation of oxidative stress, we determined the expression and subcellular localization of proteins involved in maintaining redox balance and insulin gene expression, such as nuclear factor erythroid-derived 2 (Nrf2), glutathione reductase, PDX-1, and MafA. Then, we investigated proinsulin production. The results showed that GS increased oxidative stress, reduced protein expression of all investigated factors through proteasome activation, and decreased proinsulin content. Furthermore, GS reduced ability of PDX-1 and MafA to bind DNA. Coincubation with GLP-1 reversed these GS-mediated detrimental effects. In conclusion, GLP-1, protecting cells against oxidants, triggers protective intercellular pathways in HIT-T15 cells exposed to GS.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Produtos Finais de Glicação Avançada/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Animais , Linhagem Celular , Cricetinae , Proteínas de Homeodomínio/metabolismo , Immunoblotting , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/metabolismo
2.
Mol Vis ; 18: 2509-17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112566

RESUMO

PURPOSE: Neovascularization is a common complication of many degenerative and vascular diseases of the retina. Advanced glycation end-products (AGEs) have a pathologic role in the development of retinal neovascularization, mainly for their ability in upregulating vascular endothelial growth factor-A (VEGF-A) secretion. The aim of this study was to investigate whether AGEs are able to modulate the secretion of VEGF-C, another angiogenic factor that increases the effect of VEGF-A. METHODS: A human retinal pigment epithelial cell line (ARPE-19) and human endothelial vascular cell line (HECV) cells were cultured for 24 h in presence of AGEs, and then mRNA expression of VEGF-C was analyzed with reverse transcription-polymerase chain reaction (RT-PCR). To verify whether AGEs-induced VEGF secretion is mediated by RAGE (Receptor for AGEs), RAGE expression was depleted using the small interfering RNA method. To investigate whether VEGF-A is involved in upregulating VEGF-C secretion, the cells were cultured for 24 h in the presence of bevacizumab, a monoclonal antibody against VEGF-A, alone or in combination with AGEs. VEGF-A and VEGF-C levels in the supernatants of the treated cells were evaluated with enzyme-linked immunosorbent assay. RESULTS: Exposure to AGEs significantly increased VEGF-C gene expression in ARPE-19 cells. AGEs-induced VEGF-C secretion was upregulated in retinal pigment epithelium (RPE) and endothelial cells. Downregulation of RAGE expression decreased VEGF-A secretion in cell models, and increased VEGF-C secretion in ARPE-19 cells. Adding bevacizumab to the culture medium upregulated constitutive VEGF-C secretion but did not affect AGEs-induced VEGF-C secretion. CONCLUSIONS: These findings suggest that AGEs take part in the onset of retinal neovascularization, not only by modulating VEGF-A but also by increasing VEGF-C secretion. In addition, our results suggest that VEGF-C may compensate for treatments that reduce VEGF-A.


Assuntos
Células Epiteliais/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Neovascularização Patológica , Receptores Imunológicos/antagonistas & inibidores , Epitélio Pigmentado da Retina/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
3.
Metabolism ; 57(2): 163-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18191044

RESUMO

The purpose of the present study was to evaluate the direct effects of advanced glycation end products (AGEs) on beta-cells by their exposure to a glycated serum to estimate the cellular viability and the related insulin secretion. Glycation of fetal calf serum was obtained by incubation with 50 mol/L ribose at 37 degrees C for 7 days; at the end of this incubation period, the pentosidine content ranged between 15 and 16 x 10(5) pmol/L. HIT-T15 cells, a pancreatic islet cell line, were grown and cultured for 5 days in Roswell Park Memorial Institute (RPMI) medium containing either not glycated (NGS) or glycated (GS) fetal calf serum. Cellular oxidative stress (ie, thiobarbituric acid-reactive substances) was assessed by high-performance liquid chromatography. Cellular viability was evaluated by detection of proliferation, cell necrosis, and cell apoptosis rate. The insulin secretion and the related intracellular content were evaluated by enzyme-linked immunosorbent assay. The present study reported, after 5 days of exposure to the glycation environment, a moderately reduced cellular proliferation (-20.44% +/- 2.92%) with a corresponding increase of cell necrosis (+67.7% +/- 1.56%) and cell apoptosis (+39.83% +/- 2.92%) rate in comparison with the untreated cells. Oxidative intracellular stress was higher in GS conditions compared with the NGS ones (+293.3% +/- 87.53%). Insulin release from GS-treated HIT-T15 cells was lower than that of NGS-treated cells both when cells were stimulated with low glucose concentration (2.8 mmol/L, -30.3% +/- 4.91%) or when they were challenged with high glucose concentration (16.7 mmol/L, -29.2% +/- 5.82%). Incubation of HIT-T15 cells with glycated serum also caused a significant decrease of insulin intracellular content (-44.47% +/- 9.98%). Thus, AGEs were shown to exert toxic effects on insulin-secreting cells. Chronically high intracellular oxidative stress, due to accumulation of AGEs, affects the insulin secretion machinery. The present data suggest a pivotal role of the non-enzymatic glycation process in the onset and progression of diabetes during aging and a direct adverse effect of a glycated environment on the pancreatic islet cells.


Assuntos
Produtos Finais de Glicação Avançada/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Fatores Etários , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Arginina/análogos & derivados , Arginina/farmacologia , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Lisina/análogos & derivados , Lisina/farmacologia , Estresse Oxidativo/fisiologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
Metabolism ; 55(12): 1619-24, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17142134

RESUMO

Several lines of evidence suggest that both advanced glycation end products (AGEs) and oxidation processes play key roles in the physiology of aging and age-related pathologies, leading to irreversible proteins modifications in both tissues and the extracellular matrix. Such an accelerated accumulation of these modifications has been reported to be present in several age-related chronic diseases, such as atherosclerosis, diabetes, arthritis, and neurodegenerative diseases. The current literature reveals that the specific inhibition of AGEs may constitute an innovative therapeutic goal. In experimental animals, the use of sartans significantly reduces blood pressure and kidney pentosidine content, improving both histologic renal damage and proteinuria. In this study, 12 subjects who were affected by diabetes mellitus and hypertension were subjected to oral antihypertensive therapy with valsartan (class of sartans) with timed sampling of plasma and urine pentosidine, N(epsilon)-(carboxymethyl)lysine (CML), malondialdehyde, and isoprostanes levels, respectively, at baseline and after both 3 and 6 months, with parallel ongoing evaluation of glycemic control and blood pressure levels. Valsartan elicited a good antihypertensive effect with a 30% decrease in plasma pentosidine levels (P < .05) after 3 months of therapy, followed by a slight increase after 6 months. Urinary pentosidine concentrations exhibited a 40% decrease after 3 months (215 +/- 19 vs 129 +/- 23 nmol/24 h) and a further significant reduction after 6 months of therapy (105 +/- 24 nmol/24 h). Plasma CML levels showed a progressive decrease after 3 months (23.15 +/- 3.215 vs 19.88 +/- 1.684 micromol/mL) and achieved a further slight reduction after 6 months of therapy (19.48 +/- 1.339 micromol/mL); for urinary CML, a statistically significant reduction was gained after the sixth month of therapy (48.51 +/- 5.70 vs 30.30 +/- 2.77 micromol/24 h after 3 months and 27.02 +/- 4.13 micromol/24 h after 6 months; F = 7.62, P < .005). Plasma and urinary concentrations of malondialdehyde were slightly modified by valsartan treatment; the mean levels after both 3 and 6 months did not significantly differ from baseline. Urinary 15-F2t-isoprostanes (2.96 +/- 0.45 ng/24 h) levels displayed a progressive decrease after both 3 (2.27 +/- 0.31 ng/24 h) and 6 months (1.70 +/- 0.23 ng/24 h) with statistical significance achieved only at the end of the study (P < .05). The present data suggest interesting in vivo antiglycation and antioxidation effects of this angiotensin II receptor antagonist with reductions in plasma and urinary pentosidine, plasma CML, and urinary isoprostanes levels. The present study supports an antagonistic role of valsartan in the production of AGEs precursors through the chelation of transition metals and an antioxidant activity that scavenges reactive oxygen species. This property of valsartan may broaden the scope of newly developed pharmacologic inhibitors of advanced glycoxidation.


Assuntos
Anti-Hipertensivos/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Hipertensão/tratamento farmacológico , Proteínas/metabolismo , Tetrazóis/farmacologia , Valina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Arginina/análogos & derivados , Arginina/metabolismo , Dinoprosta/análogos & derivados , Dinoprosta/urina , Feminino , Glicosilação , Humanos , Hipertensão/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Malondialdeído/análise , Pessoa de Meia-Idade , Oxirredução , Tetrazóis/uso terapêutico , Valina/farmacologia , Valina/uso terapêutico , Valsartana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...