Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(10): 2397-2405, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470088

RESUMO

Black phosphorus (BP) field-effect transistors with ultrathin channels exhibit unipolar p-type electrical conduction over a wide range of temperatures and pressures. Herein, we study a device that exhibits mobility up to 100 cm2 V-1 s-1 and a memory window up to 1.3 µA. Exposure to a supercontinuum white light source reveals that negative photoconductivity (NPC) and positive photoconductivity (PPC) coexist in the same device. Such behavior is attributed to the chemisorbed O2 molecules, with a minor role of physisorbed H2O molecules. The coexistence of NPC and PPC can be exploited in neuromorphic vision sensors, requiring the human eye retina to process the optical signals through alerting and protection (NPC), adaptation (PPC), followed by imaging and processing. Our results open new avenues for the use of BP and other two-dimentional (2D) semiconducting materials in transistors, memories, and neuromorphic vision sensors for advanced applications in robotics, self-driving cars, etc.

2.
Discov Nano ; 19(1): 57, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528187

RESUMO

Mechanically exfoliated multilayer WS2 flakes are used as the channel of field effect transistors for low-power photodetection in the visible and near-infrared (NIR) spectral range. The electrical characterization as a function of the temperature reveals devices with n-type conduction and slightly different Schottky barriers at the drain and source contacts. The WS2 phototransistors can be operated in self-powered mode, yielding both a current and a voltage when exposed to light. The spectral photoresponse in the visible and the NIR ranges shows a high responsivity (4.5 µA/W) around 1250 nm, making the devices promising for telecommunication applications.

3.
ACS Appl Nano Mater ; 6(23): 21663-21670, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093806

RESUMO

Two-dimensional rhenium disulfide (ReS2), a member of the transition-metal dichalcogenide family, has received significant attention due to its potential applications in field-effect transistors (FETs), photodetectors, and memories. In this work, we investigate the suppression of the subthreshold current during the forward voltage gate sweep, leading to an inversion of the hysteresis in the transfer characteristics of ReS2 nanosheet-based FETs from clockwise to anticlockwise. We explore the impact of temperature, sweeping gate voltage, and pressure on this behavior. Notably, the suppression in current within the subthreshold region coincides with a peak in gate current, which increases beyond a specific temperature but remains unaffected by pressure. We attribute both the suppression in drain current and the presence of peak in gate current to the charge/discharge process of gate oxide traps by thermal-assisted tunnelling. The suppression of the subthreshold current at high temperatures not only reduces power consumption but also extends the operational temperature range of ReS2 nanosheet-based FETs.

4.
Nanomaterials (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073645

RESUMO

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250-1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.

5.
Nat Nanotechnol ; 15(8): 656-660, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32541945

RESUMO

A classical battery converts chemical energy into a persistent voltage bias that can power electronic circuits. Similarly, a phase battery is a quantum device that provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on phase coherence. Here we demonstrate a phase battery in a hybrid superconducting circuit. It consists of an n-doped InAs nanowire with unpaired-spin surface states, that is proximitized by Al superconducting leads. We find that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias φ0 across the wire, leading to the anomalous Josephson effect1,2. We apply an external in-plane magnetic field and, thereby, achieve continuous tuning of φ0. Hence, we can charge and discharge the quantum phase battery. The observed symmetries of the anomalous Josephson effect in the vectorial magnetic field are in agreement with our theoretical model. Our results demonstrate how the combined action of spin-orbit coupling and exchange interaction induces a strong coupling between charge, spin and superconducting phase, able to break the phase rigidity of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...