Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Front Microbiol ; 15: 1415449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841065

RESUMO

Phosphorylation is a major post-translation modification (PTM) of proteins which is finely tuned by the activity of several hundred kinases and phosphatases. It controls most if not all cellular pathways including anti-viral responses. Accordingly, viruses often induce important changes in the phosphorylation of host factors that can either promote or counteract viral replication. Among more than 500 kinases constituting the human kinome only few have been described as important for the hepatitis B virus (HBV) infectious cycle, and most of them intervene during early or late infectious steps by phosphorylating the viral Core (HBc) protein. In addition, little is known on the consequences of HBV infection on the activity of cellular kinases. The objective of this study was to investigate the global impact of HBV infection on the cellular phosphorylation landscape early after infection. For this, primary human hepatocytes (PHHs) were challenged or not with HBV, and a mass spectrometry (MS)-based quantitative phosphoproteomic analysis was conducted 2- and 7-days post-infection. The results indicated that while, as expected, HBV infection only minimally modified the cell proteome, significant changes were observed in the phosphorylation state of several host proteins at both time points. Gene enrichment and ontology analyses of up- and down-phosphorylated proteins revealed common and distinct signatures induced by infection. In particular, HBV infection resulted in up-phosphorylation of proteins involved in DNA damage signaling and repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. Down-phosphorylated proteins were mostly involved in cell signaling and communication. Validation studies carried out on selected up-phosphorylated proteins, revealed that HBV infection induced a DNA damage response characterized by the appearance of 53BP1 foci, the inactivation of which by siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as an antiviral factor. In accordance with these findings, kinase prediction analysis indicated that HBV infection upregulates the activity of major kinases involved in DNA repair. These results strongly suggest that HBV infection triggers an intrinsic anti-viral response involving DNA repair factors and RBPs that contribute to reduce HBV replication in cell culture models.

2.
Oncotarget ; 15: 313-325, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753413

RESUMO

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tiazóis/farmacologia , Antivirais/farmacologia , Células HCT116 , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica
3.
Antiviral Res ; 217: 105678, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494979

RESUMO

The 36th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held March 13-17, 2023, in Lyon, France, and concurrently through an interactive remote meeting platform. Here we provide a report summarizing the presentations at the 36th ICAR, including the ISAR speaker awards. We also detail special events, sessions, and additional awards conferred at the meeting. ICAR returned to in-person meetings in 2022, convening in Seattle, WA, USA. The 36th ICAR is the first in-person meeting of the society in Europe since the beginning of the COVID-19 pandemic, which restricted most events to virtual attendance to help mitigate the spread and subsequent public health impact of SARS-CoV-2. An exceptionally high number of registrants and record attendance at this year's ICAR, along with a vast array of demonstrable expertise in a variety of antiviral research-related fields, reflected a strong and growing antiviral research community committed to improving health outcomes from viral diseases, including SARS-CoV-2, and to future pandemic preparedness. This report highlights the breadth of expertise, quality of research, and notable advancements that were contributed by members of ISAR and other participants at the meeting. ICAR aims to continue to provide a platform for sharing information, fostering collaborations, and supporting trainees in the field of antiviral research. The 37th ICAR will be held in Gold Coast, Australia, May 20-24, 2024.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Complexo Ferro-Dextran , Pandemias , SARS-CoV-2
4.
Hepatol Commun ; 7(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058078

RESUMO

BACKGROUND AND AIMS: HDV, a satellite of HBV, is responsible for the most severe form of human viral hepatitis, for which curative therapy is still awaited. Both HBV and HDV use the hepatic transporter of bile acids (ie, Na+-taurocholate cotransporting polypeptide) to enter hepatocytes. We have previously shown that ligands of the farnesoid-X-receptor alpha (FXR), a master regulator of bile acids metabolism, inhibit HBV replication. Here we asked whether FXR ligands can also control HDV infection. APPROACH AND RESULTS: In vitro HDV monoinfections or HDV/HBV coinfections and superinfections were performed in differentiated HepaRG cells (dHepaRG) and primary human hepatocytes. Following treatment with FXR ligands, HDV RNAs and antigens were analyzed by RT-qPCR, northern blot, immunofluorescence, and western blot. Virus secretion was studied by RNA quantification in supernatants, and the infectivity of secreted HDV particles was measured by reinfection of naive HuH7.5-Na+-taurocholate cotransporting polypeptide cells. In HDV/HBV superinfection models, a 10-day treatment with FXR ligand GW4064 decreased intracellular HDV RNAs by 60% and 40% in dHepaRG cells and primary human hepatocytes, respectively. Both HDV genomic and antigenomic RNAs were affected by treatment, which also reduced the amount of intracellular delta antigen. This antiviral effect was also observed in HDV monoinfected dHepaRG cells, abolished by FXR loss of function, and reproduced with other FXR ligands. In HBV/HDV coinfected dHepaRG cells, HDV secretion was decreased by 60% and virion-specific infectivity by >95%. CONCLUSIONS: FXR ligands both inhibit directly (ie, independently of anti-HBV activity) and indirectly (ie, dependently of anti-HBV activity) the replication, secretion, and infectivity of HDV. The overall anti-HDV activity was superior to that obtained with interferon-α, highlighting the therapeutic potential of FXR ligands in HDV-infected patients.


Assuntos
Ácidos e Sais Biliares , Vírus da Hepatite B , Humanos , Vírus da Hepatite B/genética , Ligantes , Vírion/metabolismo , Ácido Taurocólico/metabolismo , Peptídeos
5.
Hepatology ; 77(6): 2104-2117, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745934

RESUMO

BACKGROUND AND AIMS: Being the most common cause of acute viral hepatitis with >20 million cases per year and 70,000 deaths annually, HEV presents a long-neglected and underinvestigated health burden. Although the entry process of viral particles is an attractive target for pharmacological intervention, druggable host factors to restrict HEV entry have not been identified so far. APPROACH AND RESULTS: Here we identify the EGF receptor (EGFR) as a novel host factor for HEV and reveal the significance of EGFR for the HEV entry process. By utilizing RNAi, chemical modulation with Food and Drug Administration-approved drugs, and ectopic expression of EGFR, we revealed that EGFR is critical for HEV infection without affecting HEV RNA replication or assembly of progeny virus. We further unveiled that EGFR itself and its ligand-binding domain, rather than its signaling function, is responsible for the proviral effect. Modulation of EGF expression in HepaRG cells and primary human hepatocytes affected HEV infection. CONCLUSIONS: Taken together, our study provides novel insights into the life cycle of HEV and identified EGFR as a possible target for future antiviral strategies against HEV.


Assuntos
Vírus da Hepatite E , Hepatócitos , Humanos , Hepatócitos/metabolismo , Antivirais/farmacologia , Receptores ErbB/metabolismo , Interferência de RNA , Transdução de Sinais , Vírus da Hepatite E/genética , Replicação Viral
6.
Nat Commun ; 14(1): 471, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709212

RESUMO

Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a recent class of anti-HBV antivirals. CAMs disturb proper nucleocapsid assembly, by inducing formation of either aberrant assemblies (CAM-A) or of apparently normal but genome-less empty capsids (CAM-E). Classical structural approaches have revealed the CAM binding sites on the capsid protein (Cp), but conformational information on the CAM-induced off-path aberrant assemblies is lacking. Here we show that solid-state NMR can provide such information, including for wild-type full-length Cp183, and we find that in these assemblies, the asymmetric unit comprises a single Cp molecule rather than the four quasi-equivalent conformers typical for the icosahedral T = 4 symmetry of the normal HBV capsids. Furthermore, while in contrast to truncated Cp149, full-length Cp183 assemblies appear, on the mesoscopic level, unaffected by CAM-A, NMR reveals that on the molecular level, Cp183 assemblies are equally aberrant. Finally, we use a eukaryotic cell-free system to reveal how CAMs modulate capsid-RNA interactions and capsid phosphorylation. Our results establish a structural view on assembly modulation of the HBV capsid, and they provide a rationale for recently observed differences between in-cell versus in vitro capsid assembly modulation.


Assuntos
Proteínas do Capsídeo , Vírus da Hepatite B , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Capsídeo/metabolismo , Nucleocapsídeo/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo
7.
Antiviral Res ; 210: 105515, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603773

RESUMO

PREAMBULAR NOTA BENE: As a tribute to Dr Mike Bray, the following review of literature willbe mainly based on published data andconcepts, but will also contain my personal views, and in this respect could be more considered as a bioassay. Even though a cost-effective and excellent prophylactic vaccine exists since many years to protect against hepatitis B virus (HBV) infection, academic-researcher/drug-developers/stakeholders are still busy with the R&D of novel therapies that could eventually have an impact on its worldwide incidence. The Taiwanese experience have univocally demonstrated the effectiveness of constrained national HBV prophylactic vaccination programs to prevent the most dramatic HBV-induced end-stage liver disease, which is hepatocellular carcinoma; but yet the number of individuals chronically infected with the virus, for whom the existing prophylactic vaccine is no longer useful, remains high, with around 300 million individuals around the globe. In this review/bioassay, recent findings and novel concepts on prospective therapies against HBV infections will be discussed; yet it does not have the pretention to be exhaustive, as "pure immunotherapeutic concepts" will be mainly let aside (or referred to other reviews) due to a lack of expertise of this writer, but also due to the lack of, or incremental, positive results in clinical trials as-off today with these approaches.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/virologia , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/virologia
8.
J Hepatol ; 78(5): 958-970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702177

RESUMO

BACKGROUND & AIMS: Chronic coinfection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. Herein, we aimed to elucidate the molecular mechanisms underlying the widely reported observation that HDV interferes with HBV in most coinfected patients. METHODS: Patient liver tissues, primary human hepatocytes, HepaRG cells and human liver chimeric mice were used to analyze the effect of HDV on HBV using virological and RNA-sequencing analyses, as well as RNA synthesis, stability and association assays. RESULTS: Transcriptomic analyses in cell culture and mouse models of coinfection enabled us to define an HDV-induced signature, mainly composed of interferon (IFN)-stimulated genes (ISGs). We also provide evidence that ISGs are upregulated in chronically HDV/HBV-coinfected patients but not in cells that only express HDV antigen (HDAg). Inhibition of the hepatocyte IFN response partially rescued the levels of HBV parameters. We observed less HBV RNA synthesis upon HDV infection or HDV protein expression. Additionally, HDV infection or expression of HDAg alone specifically accelerated the decay of HBV RNA, and HDAg was associated with HBV RNAs. On the contrary, HDAg expression did not affect other viruses such as HCV or SARS-CoV-2. CONCLUSIONS: Our data indicate that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms. Specifically, we uncover a new viral interference mechanism in which proteins of a satellite virus affect the RNA production of its helper virus. Exploiting these findings could pave the way to the development of new therapeutic strategies against HBV. IMPACT AND IMPLICATIONS: Although the molecular mechanisms remained unexplored, it has long been known that despite its dependency, HDV decreases HBV viremia in patients. Herein, using in vitro and in vivo models, we showed that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms affecting HBV RNA metabolism, and we defined the HDV-induced modulation signature. The mechanisms we uncovered could pave the way for the development of new therapeutic strategies against HBV by mimicking and/or increasing the effect of HDAg on HBV RNA. Additionally, the HDV-induced modulation signature could potentially be correlated with responsiveness to IFN-α treatment, thereby helping to guide management of HBV/HDV-coinfected patients.


Assuntos
COVID-19 , Coinfecção , Hepatite B , Hepatite D , Humanos , Camundongos , Animais , Vírus Delta da Hepatite/fisiologia , Vírus da Hepatite B/fisiologia , Interferons , Antígenos da Hepatite delta/metabolismo , Hepatite D/complicações , Hepatite B/complicações , Replicação Viral/fisiologia , COVID-19/complicações , SARS-CoV-2/genética , RNA Viral/genética
9.
Antiviral Res ; 209: 105477, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511319

RESUMO

Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. It is caused by super-infection of hepatitis B virus (HBV)-infected hepatocytes with hepatitis D virus (HDV). While the recent conditional approval of bulevirtide for HDV treatment offers a new therapeutic modality in Europe, there is an unmet medical need to further improve therapy. A more detailed characterization of virus-host interactions is needed for the identification of novel therapeutic targets. Addressing this need, we engineered a new stably-transformed cell line, named HuH7-2C8D, producing high titer recombinant HDV and allowing the study of viral particles morphogenesis and infectivity. Using this culture system, where viral propagation by re-infection is limited, we observed an increased accumulation of edited version of the viral genomes within secreted HDV viral particles over time that is accompanied with a decrease in viral particle infectivity. We confirmed the interaction of HDV proteins with a previously described host factor in HuH7-2C8D cells and additionally showed that these cells are suitable for co-culture assays with other cell types such as macrophages. Finally, the use of HuH7-2C8D cells allowed to confirm the dual antiviral activity of farnesyl transferase inhibitors, including the clinical candidate lonafarnib, against HDV. In conclusion, we have established an easy-to-handle cell culture model to investigate HDV replication, morphogenesis, and host interactions. HuH7-2C8D cells are also suitable for high-throughput antiviral screening assays for the development of new therapeutic strategies.


Assuntos
Vírus Delta da Hepatite , Replicação Viral , Vírus Delta da Hepatite/genética , Linhagem Celular , Vírus da Hepatite B , Antivirais/farmacologia , Descoberta de Drogas
10.
Antiviral Res ; 209: 105483, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496142

RESUMO

Hepatitis B virus remains a major medical burden with more than 250 million chronically infected patients worldwide and 900,000 deaths each year, due to the disease progression towards severe complications (cirrhosis, hepatocellular carcinoma). Despite the availability of a prophylactic vaccine, this infection is still pandemic in Western Pacific and African regions, where around 6% of the adult population is infected. Among novel anti-HBV strategies, innovative drug delivery systems, such as nanoparticle platforms to deliver vaccine antigens or therapeutic molecules have been investigated. Here, we developed polylactic acid-based biodegradable nanoparticles as an innovative and efficient vaccine. They are twice functionalized by (i) the entrapment of Pam3CSK4, an immunomodulator and ligand to Toll-Like-Receptor 1/2, and by (ii) the adsorption/coating of myristoylated (2-48) derived PreS1 from the HBV surface antigen, identified as the major viral attachment site on hepatocytes. We demonstrate that such formulations mimic HBV virion with an efficient peptide recognition by the immune system, and elicit potent and durable antibody responses in naive mice during at least one year. We also show that the most efficient in vitro viral neutralization was observed with NP-Pam3CSK4-dPreS1 sera. The immunogenicity of the derived HBV antigen is modulated by the likely synergistic action of both the dPreS1 coated nanovector and the adjuvant moiety. This formulation represents a promising vaccine alternative to fight HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Receptor 2 Toll-Like , Vacinas contra Hepatite B , Formação de Anticorpos , Adjuvantes Imunológicos , Hepatite B/tratamento farmacológico , Hepatite B/prevenção & controle
11.
Antivir Chem Chemother ; 30: 20402066221130853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36305015

RESUMO

As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development. The meeting resulted in a dynamic and effective exchange of ideas and information, positively impacting the prompt progress towards new and effective prophylaxis and therapeutics.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Pandemias
12.
Antiviral Res ; 206: 105386, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963549

RESUMO

OBJECTIVES: Pegylated-interferon-alpha (Peg-IFNα), an injectable innate immune protein, is still used to treat chronically HBV-infected patients, despite its poor tolerability. Peg-IFNα has the advantage over nucleos(t)ide analogues (NAs) to be administrated in finite regimen and to lead to a higher HBsAg loss rate. Yet it would be interesting to improve the efficacy (i.e. while decreasing doses), or replace, this old medicine by novel small molecules/stimulators able to engage innate immune receptors in both HBV replicating hepatocytes and relevant innate immune cells. We have previously identified the Toll-Like-Receptor (TLR)-2 agonist Pam3CSK4 as such a potential novel immune stimulator. The aim of this study was to gain insights on the antiviral mechanisms of action of this agonist in in vitro cultivated human hepatocytes. DESIGN: We used in vitro models of HBV-infected cells, based on both primary human hepatocytes (PHH) and the non-transformed HepaRG cell line to investigate the MoA of Pam3SCK4 and identify relevant combinations with other approved or investigational drugs. RESULTS: We exhaustively described the inhibitory anti-HBV phenotypes induced by Pam3CSK4, which include a strong decrease in HBV RNA production (inhibition of synthesis and acceleration of decay) and cccDNA levels. We confirmed the long-lasting anti-HBV activity of this agonist, better described the kinetics of antiviral events, and demonstrated the specificity of action through the TLR1/2- NF-κB canonical-pathway. Moreover, we found that FEN-1 could be involved in the regulation and inhibitory phenotype on cccDNA levels. Finally, we identified the combination of Pam3CSK4 with IFNα or an investigational kinase inhibitor (called 1C8) as valuable strategies to reduce cccDNA levels and obtain a long-lasting anti-HBV effect in vitro. CONCLUSIONS: TLR2 agonists represent possible assets to improve the rate of HBV cure in patients. Further evaluations, including regulatory toxicity studies, are warranted to move toward clinical trials.


Assuntos
Hepatite B Crônica , Hepatite B , Lipopeptídeos/farmacologia , Receptor 2 Toll-Like/agonistas , Antivirais/uso terapêutico , DNA Viral/metabolismo , Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatócitos , Humanos , Interferon-alfa/farmacologia , Receptor 1 Toll-Like/metabolismo
13.
JHEP Rep ; 4(3): 100415, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35141510

RESUMO

BACKGROUND & AIMS: HDV superinfection of chronically HBV-infected patients is the most aggressive form of chronic viral hepatitis, with an accelerated progression towards fibrosis/cirrhosis and increased risk of liver failure, hepatocellular carcinoma, and death. While HDV infection is not susceptible to available direct anti-HBV drugs, suboptimal responses are obtained with interferon-α-based therapies, and the number of investigational drugs remains limited. We therefore analyzed the effect of several innate immune stimulators on HDV replication in infected hepatocytes. METHODS: We used in vitro models of HDV and HBV infection based on primary human hepatocytes (PHHs) and the non-transformed HepaRG cell line that are relevant to explore new innate immune therapies. RESULTS: We describe here, for the first time, anti-HDV effects of Pam3CSK4 and BS1, agonists of Toll-like receptor (TLR)-1/2, and the lymphotoxin-ß receptor (LTßR), respectively. Both types of agonists induced dose-dependent reductions of total intracellular HDV genome and antigenome RNA and of HDV protein levels, without toxicity in cells monoinfected with HDV or co/superinfected with HBV. Moreover, both molecules negatively affected HDV progeny release and strongly decreased their specific infectivity. The latter effect is particularly important since HDV is thought to persist in humans through constant propagation. CONCLUSIONS: Immune-modulators inducing NF-κB pathways in hepatocytes can inhibit HDV replication and should be further evaluated as a possible therapeutic approach in chronically HBV/HDV-infected patients. LAY SUMMARY: Hepatitis delta virus causes the most severe form of viral hepatitis. Despite positive recent developments, effective treatments remain a major clinical need. Herein, we show that immune-modulators that trigger the NF-κB pathways could be effective for the treatment of hepatitis delta infections.

14.
Antiviral Res ; 198: 105250, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051490

RESUMO

Chronic hepatitis D is the most severe form of chronic viral hepatitis and to date, efficient therapeutic approaches against hepatitis D virus (HDV) are limited. Among the antiviral molecules currently tested in clinical trials, the farnesyl transferase inhibitor (FTI) Lonafarnib inhibits the prenylation of the large delta antigen (L-HDAg), blocking virus assembly. Given the importance of L-HDAg in the virus life cycle, we hypothesized that Lonafarnib treatment may have side effects on virus replication. Here, we setup an innovative method for the quantification of HDV RNA allowing the independent quantification of edited and non-edited versions of the HDV genome upon infection. We demonstrated that FTI treatment of HBV/HDV co-infected dHepaRG or primary human hepatocytes leads to an accumulation of intracellular HDV RNAs and a marked increase in the levels of edited RNAs non only within the infected cells but also in the viral particles that are produced. Interestingly, these viral particles were less infectious, probably due to an enrichment in edited genomes that are packaged, leading to unproductive infection given the absence of S-HDAg synthesis after viral entry. Taken together, we setup an innovative quantification method allowing the investigation of RNA editing during HDV infection in a simple, fast, clinically-relevant assay and demonstrated for the first time the dual antiviral activity of FTI on HDV infection.


Assuntos
Vírus Delta da Hepatite , Edição de RNA , Antivirais/farmacologia , Vírus Delta da Hepatite/genética , Antígenos da Hepatite delta/metabolismo , Humanos , RNA Viral/genética , Transferases/genética , Replicação Viral
15.
Gut ; 71(5): 991-1005, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34021034

RESUMO

OBJECTIVE: RNA helicase DDX5 is downregulated during HBV replication and poor prognosis HBV-related hepatocellular carcinoma (HCC). The objective of this study is to investigate the role of DDX5 in interferon (IFN) signalling. We provide evidence of a novel mechanism involving DDX5 that enables translation of transcription factor STAT1 mediating the IFN response. DESIGN AND RESULTS: Molecular, pharmacological and biophysical assays were used together with cellular models of HBV replication, HCC cell lines and liver tumours. We demonstrate that DDX5 regulates STAT1 mRNA translation by resolving a G-quadruplex (rG4) RNA structure, proximal to the 5' end of STAT1 5'UTR. We employed luciferase reporter assays comparing wild type (WT) versus mutant rG4 sequence, rG4-stabilising compounds, CRISPR/Cas9 editing of the STAT1-rG4 sequence and circular dichroism determination of the rG4 structure. STAT1-rG4 edited cell lines were resistant to the effect of rG4-stabilising compounds in response to IFN-α, while HCC cell lines expressing low DDX5 exhibited reduced IFN response. Ribonucleoprotein and electrophoretic mobility assays demonstrated direct and selective binding of RNA helicase-active DDX5 to the WT STAT1-rG4 sequence. Immunohistochemistry of normal liver and liver tumours demonstrated that absence of DDX5 corresponded to absence of STAT1. Significantly, knockdown of DDX5 in HBV infected HepaRG cells reduced the anti-viral effect of IFN-α. CONCLUSION: RNA helicase DDX5 resolves a G-quadruplex structure in 5'UTR of STAT1 mRNA, enabling STAT1 translation. We propose that DDX5 is a key regulator of the dynamic range of IFN response during innate immunity and adjuvant IFN-α therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Regiões 5' não Traduzidas/genética , Antivirais/farmacologia , Carcinoma Hepatocelular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Vírus da Hepatite B , Hepatócitos/metabolismo , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Neoplasias Hepáticas/metabolismo , Biossíntese de Proteínas , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/farmacologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Replicação Viral
16.
Clin Res Hepatol Gastroenterol ; 46(8): 101773, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332134

RESUMO

Diagnosis of chronic hepatitis B virus (HBV) infection, initial staging of infection and monitoring of treated and untreated patients are mainly based on clinical, biological and imaging criteria allowing a complete non-invasive management for the majority of patients. Along to the conventional virological tools, rapid diagnostic tests and blotting paper tests for HBV DNA are validated alternatives. After diagnosis, the initial work-up should include HIV, HCV and HDV serologies, HBeAg status, and HBsAg and HBV DNA quantification. Assessment of severity (inflammation and fibrosis) is based on ALT serum levels and non-invasive evaluation of liver fibrosis by elastography or blood tests, which must be interpreted cautiously using specific cut-offs and taking into account ALT levels. Taken together, these parameters allow disease classification and treatment decision. Decision of hepatocellular carcinoma screening by ultra-sound every six months may be difficult in non-cirrhotic patients and the use of risk-scores such as PAGE-B is encouraged. Chronic HBV infection often has a dynamic and often unpredictable profile and regular monitoring is mandatory. In untreated patients, regular (3-12 months) follow-up should include ALT and HBV DNA serum levels. Periodical HBsAg quantification and non-invasive evaluation of liver fibrosis may refine disease outcome and prognosis. In treated patients, checking efficacy is mainly based on HBV DNA negativity. In patients with advanced fibrosis, evolution of liver stiffness can be useful for portal hypertension evaluation, but its improvement should not be considered to stop hepatocellular carcinoma screening. Finally, new parameters (HBV RNA, HBcrAg) are promising but their use is still restricted for research.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , DNA Viral , Seguimentos , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Infecção Persistente , RNA/uso terapêutico
17.
JHEP Rep ; 3(6): 100354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704004

RESUMO

BACKGROUND & AIMS: Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. METHODS: Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTßR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. RESULTS: We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTßR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. CONCLUSIONS: Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. LAY SUMMARY: Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection.

19.
Liver Int ; 41(11): 2547-2559, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520597

RESUMO

In their never-ending quest towards persistence within their host, hepatitis viruses have developed numerous ways to counteract the liver innate immunity. This review highlights the different and common mechanisms employed by these viruses to (i) establish in the liver (passive entry or active evasion from immune recognition) and (ii) actively inhibit the innate immune response (ie modulation of pattern recognition receptor expression and/or signalling pathways, modulation of interferon response and modulation of immune cells count or phenotype).


Assuntos
Imunidade Inata , Vírus , Interferons , Fígado , Receptores de Reconhecimento de Padrão
20.
JHEP Rep ; 3(5): 100330, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34409278

RESUMO

BACKGROUND & AIMS: HBV persists in the nucleus of infected hepatocytes as a covalently closed circular DNA (cccDNA) episome that constitutes the template for viral RNA and protein synthesis. Both HBx and HBc (core) viral proteins associate with cccDNA but, while HBx is required for viral transcription, the role of HBc is still unclear. The aim of this study was to determine if HBc derived from incoming nucleocapsid can associate with cccDNA before the onset of viral transcription and protein production. METHODS: Chromatin immunoprecipitation assays were performed in native conditions. In addition, differentiated HepaRG (dHepaRG) cells infected with HBx-deficient HBV were used to investigate if HBc delivered by incoming virions can associate with cccDNA. RESULTS: Our results indicate that HBc can associate with cccDNA in the absence of viral transcription and de novo protein synthesis. In dHepaRG cells, this association is stable for at least 6 weeks. CONCLUSION: These results suggest that virion-delivered HBc may participate at an early stage of cccDNA formation and/or transcription. LAY SUMMARY: The hepatitis B virus genome is released into the nucleoplasm of infected cells after disassembly of the viral nucleocapsids at the nuclear membrane. Herein, we show for the first time that virion-delivered hepatitis B core protein, a component of the viral capsid, can stably associate with integrated viral DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...