Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 10082, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26656850

RESUMO

The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, 'Agulhas leakage', forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870-2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. This is relevant for climate in the North Atlantic.

2.
Nat Commun ; 6: 6521, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25735516

RESUMO

Fossils of marine microorganisms such as planktic foraminifera are among the cornerstones of palaeoclimatological studies. It is often assumed that the proxies derived from their shells represent ocean conditions above the location where they were deposited. Planktic foraminifera, however, are carried by ocean currents and, depending on the life traits of the species, potentially incorporate distant ocean conditions. Here we use high-resolution ocean models to assess the footprint of planktic foraminifera and validate our method with proxy analyses from two locations. Results show that foraminifera, and thus recorded palaeoclimatic conditions, may originate from areas up to several thousands of kilometres away, reflecting an ocean state significantly different from the core site. In the eastern equatorial regions and the western boundary current extensions, the offset may reach 1.5 °C for species living for a month and 3.0 °C for longer-living species. Oceanic transport hence appears to be a crucial aspect in the interpretation of proxy signals.


Assuntos
Clima , Foraminíferos/fisiologia , Fósseis , Modelos Teóricos , Plâncton/fisiologia , Movimentos da Água , Oceanografia/métodos , Oceanos e Mares , Plâncton/citologia , Datação Radiométrica
3.
Ecol Evol ; 3(9): 2994-3004, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24101989

RESUMO

Sub-Antarctic islands represent critical breeding habitats for land-based top predators that dominate Southern Ocean food webs. Reproduction and molting incur high energetic demands that are sustained at the sub-Antarctic Prince Edward Islands (PEIs) by both inshore (phytoplankton blooms; "island mass effect"; autochthonous) and offshore (allochthonous) productivity. As the relative contributions of these sustenance pathways are, in turn, affected by oceanographic conditions around the PEIs, we address the consequences of climatically driven changes in the physical environment on this island ecosystem. We show that there has been a measurable long-term shift in the carbon isotope signatures of the benthos inhabiting the shallow shelf region of the PEIs, most likely reflecting a long-term decline in enhanced phytoplankton productivity at the islands in response to a climate-driven shift in the position of the sub-Antarctic Front. Our results indicate that regional climate change has affected the balance between allochthonous and autochthonous productivity at the PEIs. Over the last three decades, inshore-feeding top predators at the islands have shown a marked decrease in their population sizes. Conversely, population sizes of offshore-feeding predators that forage over great distances from the islands have remained stable or increased, with one exception. Population decline of predators that rely heavily on organisms inhabiting the inshore region strongly suggest changes in prey availability, which are likely driven by factors such as fisheries impacts on some prey populations and shifts in competitive interactions among predators. In addition to these local factors, our analysis indicates that changes in prey availability may also result indirectly through regional climate change effects on the islands' marine ecosystem. Most importantly, our results indicate that a fundamental shift in the balance between allochthonous and autochthonous trophic pathways within this island ecosystem may be detected throughout the food web, demonstrating that the most powerful effects of climate change on marine systems may be indirect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...