Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cardiol ; 309: 40-47, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223963

RESUMO

BACKGROUND: Heart surgery with cardio-pulmonary bypass (CPB) is associated with lung ischemia leading to injury and inflammation. It has been suggested this is a result of the lungs being kept deflated throughout the duration of CPB. Low frequency ventilation (LFV) during CPB has been proposed to reduce lung dysfunction. METHODS: We used a semi-biased multi-omic approach to analyse lung biopsies taken before and after CPB from 37 patients undergoing coronary artery bypass surgery randomised to both lungs left collapsed or using LFV for the duration of CPB. We also examined inflammatory and oxidative stress markers from blood samples from the same patients. RESULTS: 30 genes were induced when the lungs were left collapsed and 80 by LFV. Post-surgery 26 genes were significantly higher in the LFV vs. lungs left collapsed, including genes associated with inflammation (e.g. IL6 and IL8) and hypoxia/ischemia (e.g. HIF1A, IER3 and FOS). Relatively few changes in protein levels were detected, perhaps reflecting the early time point or the importance of post-translational modifications. However, pathway analysis of proteomic data indicated that LFV was associated with increased "cellular component morphogenesis" and a decrease in "blood circulation". Lipidomic analysis did not identify any lipids significantly altered by either intervention. DISCUSSION: Taken together these data indicate the keeping both lungs collapsed during CPB significantly induces lung damage, oxidative stress and inflammation. LFV during CPB increases these deleterious effects, potentially through prolonged surgery time, further decreasing blood flow to the lungs and enhancing hypoxia/ischemia.


Assuntos
Ponte Cardiopulmonar , Proteômica , Ponte Cardiopulmonar/efeitos adversos , Ponte de Artéria Coronária/efeitos adversos , Humanos , Pulmão/cirurgia , Respiração
2.
Lung Cancer ; 90(2): 121-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26363803

RESUMO

Both COPD and lung cancer are major worldwide health concerns owing to cigarette smoking, and represent a huge, worldwide, preventable disease burden. Whilst the majority of smokers will not develop either COPD or lung cancer, they are closely related diseases, occurring as co-morbidities at a higher rate than if they were independently triggered by smoking. Lung cancer and COPD may be different aspects of the same disease, with the same underlying predispositions, whether this is an underlying genetic predisposition, telomere shortening, mitochondrial dysfunction or premature aging. In the majority of smokers, the burden of smoking may be dealt with by the body's defense mechanisms: anti-oxidants such as superoxide dismutases, anti-proteases and DNA repair mechanisms. However, in the case of both diseases these fail, leading to cancer if mutations occur or COPD if damage to the cell and proteins becomes too great. Alternatively COPD could be a driving factor in lung cancer, by increasing oxidative stress and the resulting DNA damage, chronic exposure to pro-inflammatory cytokines, repression of the DNA repair mechanisms and increased cellular proliferation. Understanding the mechanisms that drive these processes in primary cells from patients with these diseases along with better disease models is essential for the development of new treatments.


Assuntos
Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética , Animais , Dano ao DNA/genética , Humanos , Estresse Oxidativo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...