Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Genet Metab Rep ; 39: 101091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38770403

RESUMO

Branched chain ketoacid dehydrogenase kinase (BCKDK) deficiency is a recently described inherited neurometabolic disorder of branched chain amino acid (BCAA) metabolism implying increased BCAA catabolism. It has been hypothesized that a severe reduction in systemic BCAA levels underlies the disease pathophysiology, and that BCAA supplementation may ameliorate disease phenotypes. To test this hypothesis, we characterized a recent mouse model of BCKDK deficiency and evaluated the efficacy of enteral BCAA supplementation in this model. Surprisingly, BCAA supplementation exacerbated neurodevelopmental deficits and did not correct biochemical abnormalities despite increasing systemic BCAA levels. These data suggest that aberrant flux through the BCAA catabolic pathway, not just BCAA insufficiency, may contribute to disease pathology. In support of this conclusion, genetic re-regulation of BCAA catabolism, through Dbt haploinsufficiency, partially rescued biochemical and behavioral phenotypes in BCKDK deficient mice. Collectively, these data raise into question assumptions widely made about the pathophysiology of BCKDK insufficiency and suggest a novel approach to develop potential therapies for this disease.

2.
Eur J Hum Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678163

RESUMO

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.

3.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352329

RESUMO

Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.

4.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873402

RESUMO

Branched chain ketoacid dehydrogenase kinase (BCKDK) deficiency is a recently described inherited neurometabolic disorder of branched chain amino acid (BCAA) metabolism implying increased BCAA catabolism. It has been hypothesized that a severe reduction in systemic BCAA levels underlies the disease pathophysiology, and that BCAA supplementation may ameliorate disease phenotypes. To test this hypothesis, we characterized a recent mouse model of BCKDK deficiency and evaluated the efficacy of enteral BCAA supplementation in this model. Surprisingly, BCAA supplementation exacerbated neurodevelopmental deficits and did not correct biochemical abnormalities despite increasing systemic BCAA levels. These data suggest that aberrant flux through the BCAA catabolic pathway, not just BCAA insufficiency, may contribute to disease pathology. In support of this conclusion, genetic re-regulation of BCAA catabolism, through Dbt haploinsufficiency, partially rescued biochemical and behavioral phenotypes in BCKDK deficient mice. Collectively, these data raise into question assumptions widely made about the pathophysiology of BCKDK insufficiency and suggest a novel approach to develop potential therapies for this disease.

5.
Anat Rec (Hoboken) ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747411

RESUMO

Achondroplasia, the most common chondrodysplasia in humans, is caused by one of two gain of function mutations localized in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) leading to constitutive activation of FGFR3 and subsequent growth plate cartilage and bone defects. Phenotypic features of achondroplasia include macrocephaly with frontal bossing, midface hypoplasia, disproportionate shortening of the extremities, brachydactyly with trident configuration of the hand, and bowed legs. The condition is defined primarily on postnatal effects on bone and cartilage, and embryonic development of tissues in affected individuals is not well studied. Using the Fgfr3Y367C/+ mouse model of achondroplasia, we investigated the developing chondrocranium and Meckel's cartilage (MC) at embryonic days (E)14.5 and E16.5. Sparse hand annotations of chondrocranial and MC cartilages visualized in phosphotungstic acid enhanced three-dimensional (3D) micro-computed tomography (microCT) images were used to train our automatic deep learning-based 3D segmentation model and produce 3D isosurfaces of the chondrocranium and MC. Using 3D coordinates of landmarks measured on the 3D isosurfaces, we quantified differences in the chondrocranium and MC of Fgfr3Y367C/+ mice relative to those of their unaffected littermates. Statistically significant differences in morphology and growth of the chondrocranium and MC were found, indicating direct effects of this Fgfr3 mutation on embryonic cranial and pharyngeal cartilages, which in turn can secondarily affect cranial dermal bone development. Our results support the suggestion that early therapeutic intervention during cartilage formation may lessen the effects of this condition.

6.
Trends Mol Med ; 29(10): 783-785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37455236

RESUMO

TBCK syndrome is an autosomal recessive disorder primarily characterized by global developmental delay, hypotonia, abnormal magnetic resonance imaging (MRI), and distinctive craniofacial phenotypes. High variability is observed among affected individuals and their corresponding variants, making clinical diagnosis challenging. Here, we discuss recent breakthroughs in clinical considerations, TBCK function, and therapeutic development.


Assuntos
Doenças Neurodegenerativas , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/etiologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Fenótipo
7.
Orthod Craniofac Res ; 26(3): 415-424, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36458927

RESUMO

OBJECTIVES: Antidepressants, specifically Selective Serotonin Re-uptake Inhibitors (SSRIs), that alter serotonin metabolism are currently the most commonly prescribed drugs for the treatment of depression. There is some evidence to suggest these drugs contribute to birth defects. As jaw development is often altered in craniofacial birth defects, the purpose of this study was to interrogate the effects of in utero SSRI exposure in a preclinical model of mandible development. MATERIALS AND METHODS: Wild-type C57BL6 mice were used to produce litters that were exposed in utero to an SSRI, Citalopram (500 µg/day). Murine mandibles from P15 pups were analysed for a change in shape and composition. RESULTS: Analysis indicated an overall shape change with total mandibular length and ramus height being shorter in exposed pups as compared to controls. Histomorphometric analysis revealed that first molar length was longer in exposed pups while third molar length was shorter in exposed as compared to control. Histological investigation of molars and surrounding periodontium revealed no change in collagen content of the molar in exposed pups, some alteration in collagen composition in the periodontium, increased alkaline phosphatase in molars and periodontium and decreased mesenchymal cell marker presence in exposed mandibles. CONCLUSION: The results of this study reveal SSRI exposure may interrupt mandible growth as well as overall dental maturation in a model of development giving insight into the expectation that children exposed to SSRIs may require orthodontic intervention.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Animais , Camundongos , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Serotonina/metabolismo , Camundongos Endogâmicos C57BL , Citalopram/efeitos adversos , Mandíbula/metabolismo
8.
Life Sci ; 311(Pt A): 121158, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36370870

RESUMO

AIMS: Evidence suggests alterations of thyroid hormone levels can disrupt normal bone development. Most data suggest the major targets of thyroid hormones to be the Htra1/Igf1 pathway. Recent discovery by our group suggests involvement of targets WNT pathway, specifically overexpression of antagonist Sfrp4 in the presence of exogenous thyroid hormone. MAIN METHODS: Here we aimed to model these interactions in vitro using primary and isotype cell lines to determine if thyroid hormone drives increased Sfrp4 expression in cells relevant to craniofacial development. Transcriptional profiling, bioinformatics interrogation, protein and function analyses were used. KEY FINDINGS: Affymetrix transcriptional profiling found Sfrp4 overexpression in primary cranial suture derived cells stimulated with thyroxine in vitro. Interrogation of the SFRP4 promoter identified multiple putative binding sites for thyroid hormone receptors. Experimentation with several cell lines demonstrated that thyroxine treatment induced Sfrp4 expression, demonstrating that Sfrp4 mRNA and protein levels are not tightly coupled. Transcriptional and protein analyses demonstrate thyroid hormone receptor binding to the proximal promoter of the target gene Sfrp4 in murine calvarial pre-osteoblasts. Functional analysis after thyroxine hormone stimulation for alkaline phosphatase activity shows that pre-osteoblasts increase alkaline phosphatase activity compared to other cell types, suggesting cell type susceptibility. Finally, we added recombinant SFRP4 to pre-osteoblasts in combination with thyroxine treatment and observed a significant decrease in alkaline phosphatase positivity. SIGNIFICANCE: Taken together, these results suggest SFRP4 may be a key regulatory molecule that prevents thyroxine driven osteogenesis. These data corroborate clinical findings indicating a potential for SFRP4 as a diagnostic or therapeutic target for hyperostotic craniofacial disorders.


Assuntos
Fosfatase Alcalina , Tiroxina , Camundongos , Animais , Tiroxina/metabolismo , Fosfatase Alcalina/metabolismo , Osteoblastos/metabolismo , Via de Sinalização Wnt/genética , Osteogênese/genética , Proteínas Proto-Oncogênicas/metabolismo
9.
Front Genet ; 13: 871927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651944

RESUMO

The Fgfr2c C342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel's cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2c C342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c +/+ ). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2c C342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2c C342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2c C342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2c C342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.

10.
Elife ; 112022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704354

RESUMO

The cranial endo and dermal skeletons, which comprise the vertebrate skull, evolved independently over 470 million years ago and form separately during embryogenesis. In mammals, much of the cartilaginous chondrocranium is transient, undergoing endochondral ossification or disappearing, so its role in skull morphogenesis is not well studied and it remains an enigmatic structure. We provide complete 3D reconstructions of the laboratory mouse chondrocranium from embryonic day (E) 13.5 through E17.5 using a novel methodology of uncertainty-guided segmentation of phosphotungstic enhanced 3D micro-computed tomography images with sparse annotation. We evaluate the embryonic mouse chondrocranium and dermatocranium in 3D, and delineate the effects of a Fgfr2 variant on embryonic chondrocranial cartilages and on their association with forming dermal bones using the Fgfr2cC342Y/+ Crouzon syndrome mouse. We show that the dermatocranium develops outside of and in shapes that conform to the chondrocranium. Results reveal direct effects of the Fgfr2 variant on embryonic cartilage, on chondrocranium morphology, and on the association between chondrocranium and dermatocranium development. Histologically, we observe a trend of relatively more chondrocytes, larger chondrocytes, and/or more matrix in the Fgfr2cC342Y/+ embryos at all timepoints before the chondrocranium begins to disintegrate at E16.5. The chondrocrania and forming dermatocrania of Fgfr2cC342Y/+ embryos are relatively large, but a contrasting trend begins at E16.5 and continues into early postnatal (P0 and P2) timepoints, with the skulls of older Fgfr2cC342Y/+ mice reduced in most dimensions compared to Fgfr2c+/+ littermates. Our findings have implications for the study and treatment of human craniofacial disease, for understanding the impact of chondrocranial morphology on skull growth, and potentially on the evolution of skull morphology.


Assuntos
Disostose Craniofacial , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Cartilagem , Disostose Craniofacial/patologia , Modelos Animais de Doenças , Mamíferos , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Crânio/anatomia & histologia , Microtomografia por Raio-X
11.
J Biomech ; 130: 110889, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871896

RESUMO

The human temporomandibular joint (TMJ) lateral capsule ligament (LCL) complex is debated as a fibrous capsule with distinct ligaments or ligamentous thickening, necessitating further evaluation of the complex and its role in TMJ anatomy and mechanics. This study explores the ultrastructural arrangement, biomechanical tensile properties, and biochemical composition of the human LCL complex including region-specific differences to explore the presence of a distinct temporomandibular ligament and sex-specific differences to inform evaluations of potential etiological mechanisms. LCL complex ultrastructural arrangement, biomechanical properties, and biochemical composition were determined using cadaveric samples. Statistical modeling assessed sex- and region-specific effects on LCL complex tissue properties. Collagen fiber coherency, collagen fiber bundle size, and elastin fiber count did not differ between sexes, but females trended higher in elastin fiber count. LCL complex water and sGAG content did not differ between sexes or regions, but collagen content was higher in the anterior region (311.0 ± 185.6 µg/mg) compared to the posterior region (221.0 ± 124.9 µg/mg) (p = 0.045) across sexes and in males (339.6 ± 170.6 µg/mg) compared to females (204.5 ± 130.7 µg/mg) (p = 0.006) across regions. Anterior failure stress (1.1 ± 0.7 MPa) was larger than posterior failure stress (0.6 ± 0.4 MPa) (p = 0.024). Regional differences confirm the presence of a mechanically and compositionally distinct temporomandibular ligament. Baseline sex-specific differences are critical for etiological investigations of sex disparities in TMJ disorders. These results have important biomechanical and clinical ramifications, providing critical baseline tissue material properties, informing the development of TMJ musculoskeletal models, and identifying new areas for etiologic investigations for temporomandibular disorders.


Assuntos
Transtornos da Articulação Temporomandibular , Articulação Temporomandibular , Fenômenos Biomecânicos , Colágeno , Feminino , Humanos , Ligamentos Articulares , Masculino , Relação Estrutura-Atividade
12.
Anat Rec (Hoboken) ; 304(5): 1020-1053, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33015949

RESUMO

Cranial synchondroses are cartilaginous joints between basicranial bones or between basicranial bones and septal cartilage, and have been implicated as having a potential active role in determining craniofacial form. However, few studies have examined them histologically. Using histological and immunohistochemical methods, we examined all basicranial joints in serial sagittal sections of newborn heads from nine genera of primates (five anthropoids, four strepsirrhines). Each synchondrosis was examined for characteristics of active growth centers, including a zonal distribution of proliferating and hypertrophic chondrocytes, as well as corresponding changes in matrix characteristics (i.e., density and organization of Type II collagen). Results reveal three midline and three bilateral synchondroses possess attributes of active growth centers in all species (sphenooccipital, intrasphenoidal, presphenoseptal). One midline synchondrosis (ethmoseptal) and one bilateral synchondrosis (alibasisphenoidal synchondrosis [ABS]) are active growth centers in some but not all newborn primates. ABS is oriented more anteriorly in monkeys compared to lemurs and bushbabies. The sphenoethmoidal synchondrosis (SES) varies at birth: in monkeys, it is a suture-like joint (i.e., fibrous tissue between the two bones); however, in strepsirrhines, the jugum sphenoidale is ossified while the mesethmoid remains cartilaginous. No species possesses an SES that has the organization of a growth plate. Overall, our findings demonstrate that only four midline synchondroses have the potential to actively affect basicranial angularity and facial orientation during the perinatal timeframe, while the SES of anthropoids essentially transitions toward a "suture-like" function, permitting passive growth postnatally. Loss of cartilaginous continuity at SES and reorientation of ABS distinguish monkeys from strepsirrhines.


Assuntos
Cartilagem/crescimento & desenvolvimento , Suturas Cranianas/crescimento & desenvolvimento , Crânio/crescimento & desenvolvimento , Strepsirhini/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Osteogênese/fisiologia
13.
Enzyme Microb Technol ; 142: 109678, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33220866

RESUMO

Saccharification of cellulosic biomass for the fermentation of transportation fuels faces several challenges. Cellulose is highly stable, and even with enzymatic assistance, decomposition of cellulose is slow. Additionally, the enzymes are expensive and sensitive to thermal and mechanical inactivation. In this work, we studied the effects of moderate electric field (MEF, in the range from 1 to 1000 V per cm) treatments on the effectiveness of enzymatic saccharification. MEF treatments were applied to determine their effects on enzyme activity. We considered the effects of field strength, frequency, application regime and temperature. It was found that the enzyme responded to alterations in the frequency of the waveform, with 50 to 60 Hz maximizing the effects of the field, although the effects of field strength and application regime were more significant. It was found that the electric field could have a positive, negative, or negligible effect depending on the field strength. Most notably, when MEF treatments were applied over a range of temperatures, it was found that MEF treatment significantly improved enzyme activity at lower temperatures, leading to the observation that MEF treatment imitates a temperature increase. Calculations simulating the electrophoretic motion of the enzymes verified that the magnitude of motion associated with the MEF treatments was qualitatively similar to the change in molecular motion associated with temperature increases.


Assuntos
Celulase , Celulose , Biomassa , Celulase/metabolismo , Celulose/metabolismo , Fermentação , Hidrólise , Temperatura
14.
Life Sci ; 255: 117827, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450170

RESUMO

AIMS: Data suggest pharmacological treatment of depression with selective serotonin reuptake inhibitors (SSRI) may impair bone health. Our group has previously modeled compromised craniofacial healing after treatment with sertraline, a commonly prescribed SSRI, and hypothesized potential culprits: alterations in bone cells, collagen, and/or inflammation. Here we interrogate bone lineage cell alterations due to sertraline treatment as a potential cause of the noted compromised bone healing. MAIN METHODS: Murine pre-osteoblast, pre-osteoclast, osteoblast, and osteoclast cells were treated with clinically relevant concentrations of the SSRI. Studies focused on serotonin pathway targets, cell viability, apoptosis, differentiation, and the osteoblast/osteoclast feedback loop. KEY FINDINGS: All cells studied express neurotransmitters (e.g. serotonin transporter, SLC6A4, SSRI target) and G-protein-coupled receptors associated with the serotonin pathway. Osteoclasts presented the greatest native expression of Slc6a4 with all cell types exhibiting decreases in Slc6a4 expression after SSRI treatment. Pre-osteoclasts exhibited alteration to their differentiation pathway after treatment. Pre-osteoblasts and osteoclasts showed reduced apoptosis after treatment but showed no significant differences in functional assays. RANKL: OPG mRNA and protein ratios were decreased in the osteoblast lineage. Osteoclast lineage cells treated with sertraline demonstrated diminished TRAP positive cells when pre-exposed to sertraline prior to RANKL-induced differentiation. SIGNIFICANCE: These data suggest osteoclasts are a likely target of bone homeostasis disruption due to sertraline treatment, most potently through the osteoblast/clast feedback loop.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo
15.
Mol Immunol ; 117: 94-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759326

RESUMO

Once thought to have revolutionized therapeutic intervention in surgery, Recombinant Human Bone Morphogenic Protein 2 (rhBMP2) is now in its second decade of sustained controversy over the side effects associated with its use. Side effects associated with clinical use of rhBMP2 (Infuse, Medtronic Inc) include a marked inflammatory response, pain, therapeutic failures, ectopic bone, tissue degradation, and death. What is missing, despite the depth of literature on the subject, is a direct interrogation of rhBMP2, specifically for inflammation. Here we set out to determine if rhBMP2 alters traditional macrophage markers associated with pro-inflammatory responses, and pro-reparative responses to injury. Based on our previous work, we hypothesized there would be no direct effect of the peptide on macrophage polarization. Here we utilized commercially available murine macrophages, RAW 264.7, and treated these cells with rhBMP2 in standard growth media or macrophage polarizing media (M1 and M2) at several doses of the peptide. Our readouts were cell viability, apoptosis, gene expression of M1 and M2 markers, and ELISA for M1 marker iNOS, and M2 marker Arg1. Our data give very little evidence to support an alteration in macrophage phenotype by rhBMP2 alone, or alteration of the phenotype when cultured in enriched M1 or M2 media. These results further suggest that other factors associated with the clinical use of Infuse, likely supraphysiological rhBMP2 doses and off label usage, are more likely the culprit for poor outcomes. This further reinforces the utility of rhBMP2 and other peptides in tissue engineering therapies when conditions are tightly controlled.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/imunologia , Camundongos , Células RAW 264.7 , Proteínas Recombinantes/farmacologia
16.
Stem Cell Res ; 40: 101528, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415959

RESUMO

The Centers for Disease Control and Prevention, National Birth Defects Study suggests that environmental exposures including maternal thyroid diseases, maternal nicotine use, and use of selective serotonin reuptake inhibitors (SSRIs) may exacerbate incidence and or severity of craniofacial abnormalities including craniosynostosis. Premature fusion of a suture(s) of the skull defines the birth defect craniosynostosis which occurs in 1:1800-2500 births. A proposed mechanism of craniosynostosis is the disruption of proliferation and differentiation of cells in the perisutural area. Here, we hypothesize that pharmacological exposures including excess thyroid hormone, nicotine, and SSRIs lead to an alteration of stem cells within the sutures resulting in premature fusion. In utero exposure to nicotine and citalopram (SSRI) increased the risk of premature suture fusion in a wild-type murine model. Gli1+ stem cells were reduced, stem cell populations were depleted, and homeostasis of the suture mesenchyme was altered with exposure. Thus, although these pharmacological exposures can deplete calvarial stem cell populations leading to craniosynostosis, depletion of stem cells is not a unifying mechanism for pharmacological exposure associated craniosynostosis.


Assuntos
Craniossinostoses/etiologia , Nicotina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Células-Tronco/efeitos dos fármacos , Hormônios Tireóideos/farmacologia , Animais , Citalopram/farmacologia , Meios de Cultura/química , Regulação para Baixo/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Crânio/crescimento & desenvolvimento , Células-Tronco/metabolismo , Células-Tronco/patologia , Tiroxina/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
17.
Sci Rep ; 9(1): 3805, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846819

RESUMO

Despite the link between adverse birth outcomes due to pre- and peri-natal nicotine exposure, research suggests 11% of US women continue to smoke or use alternative nicotine products throughout pregnancy. Maternal smoking has been linked to incidence of craniofacial anomalies. We hypothesized that pre-natal nicotine exposure may directly alter craniofacial development independent of the other effects of cigarette smoking. To test this hypothesis, we administered pregnant C57BL6 mice drinking water supplemented with 0, 50, 100 or 200 µg/ml nicotine throughout pregnancy. On postnatal day 15 pups were sacrificed and skulls underwent micro-computed tomography (µCT) and histological analyses. Specific nicotinic acetylcholine receptors, α3, α7, ß2, ß4 were identified within the calvarial growth sites (sutures) and centers (synchondroses). Exposing murine calvarial suture derived cells and isotype cells to relevant circulating nicotine levels alone and in combination with nicotinic receptor agonist and antagonists resulted in cell specific effects. Most notably, nicotine exposure increased proliferation in calvarial cells, an effect that was modified by receptor agonist and antagonist treatment. Currently it is unclear what component(s) of cigarette smoke is causative in birth defects, however these data indicate that nicotine alone is capable of disrupting growth and development of murine calvaria.


Assuntos
Nicotina/farmacologia , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Receptores Nicotínicos/metabolismo , Crânio/efeitos dos fármacos , Animais , Feminino , Camundongos , Gravidez , Crânio/diagnóstico por imagem , Crânio/metabolismo , Microtomografia por Raio-X
18.
Wound Repair Regen ; 27(4): 335-344, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805987

RESUMO

Large bone injuries, defects, and chronic wounds present a major problem for medicine. Several therapeutic strategies are used clinically to precipitate bone including a combination therapy delivering osteoinductive bone morphogenetic protein 2 (rhBMP-2) via an osteoconductive scaffold (absorbable collagen sponge [ACS], i.e., INFUSE). Adverse side effects reportedly associated with rhBMP2 administration include rampant inflammation and clinical failures. Although acute inflammation is necessary for proper healing in bone, inflammatory cascade dysregulation can result in sustained tissue damage and poor healing. We hypothesized that a subclinical dose of rhBMP2 modeled in the murine calvarial defect would not precipitate alterations to inflammatory markers during acute phases of bone wound healing. We utilized the 5 mm critical size calvarial defect in C57BL6 wild-type mice which were subsequently treated with ACS and a subclinical dose of rhBMP2 shown to be optimal for healing. Three and 7-day postoperative time points were used to assess the role that rhBMP-2 plays in modulating inflammation vs. ACS alone by cytokine array and histological interrogation. Data revealed that rhBMP-2 delivery resulted in substantial modulation of several markers associated with inflammation, most of which decreased to levels similar to control by the 7-day time point. Additionally, while rhBMP-2 administration increased macrophage response, this peptide had a little noticeable effect on traditional markers of macrophage polarization (M1-iNOS, M2-Arg1). These results suggest that rhBMP-2 delivered at a lower dose does not precipitate rampant inflammation. Thus, an assessment of dosing for rhBMP-2 therapies may lead to better healing outcomes and less surgical failure.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Colágeno/farmacologia , Fraturas Ósseas/patologia , Inflamação/patologia , Osteogênese/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Implantes Absorvíveis , Animais , Modelos Animais de Doenças , Fraturas Ósseas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Alicerces Teciduais , Cicatrização/fisiologia
19.
J Transl Med ; 16(1): 321, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463618

RESUMO

BACKGROUND: Bone is a highly vascularized and resilient organ with innate healing abilities, however some bone injuries overwhelm these attributes and require intervention, such as bone tissue engineering strategies. Combining biomaterials and growth factors, such as bone morphogenetic protein 2 (BMP2), is one of the most commonly used tissue engineering strategies. However, use of BMP2 has been correlated with negative clinical outcomes including aberrant inflammatory response, poor quality bone, and ectopic bone. METHODS: In the present study, a novel poly-n-acetyl glucosamine (pGlcNAc, trade name Talymed) scaffold was utilized in addition to the commonly used acellular collagen sponge (ACS) BMP2 delivery system in a murine calvarial defect model to investigate whether the innate properties of Talymed can reduce the noted negative bone phenotypes associated with BMP2 treatment. RESULTS: Comparison of murine calvarial defect healing between ACS with and without Talymed revealed that there was no measurable healing benefit for the combined treatment. Healing was most effective utilizing the traditional acellular collagen sponge with a reduced dose of BMP2. CONCLUSIONS: The results of this investigation lead to the conclusion that excessive dosing of BMP2 may be responsible for the negative clinical side effects observed with this bone tissue engineering strategy. Rather than augmenting the currently used ACS BMP2 bone wound healing strategy with an additional anti-inflammatory scaffold, reducing the dose of BMP2 used in the traditional delivery system results in optimal healing without the published negative side effects of BMP2 treatment.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Colágeno/farmacologia , Nanofibras/química , Crânio/patologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Microtomografia por Raio-X
20.
Int J Oral Sci ; 10(3): 25, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30174329

RESUMO

Bone wound healing is a highly dynamic and precisely controlled process through which damaged bone undergoes repair and complete regeneration. External factors can alter this process, leading to delayed or failed bone wound healing. The findings of recent studies suggest that the use of selective serotonin reuptake inhibitors (SSRIs) can reduce bone mass, precipitate osteoporotic fractures and increase the rate of dental implant failure. With 10% of Americans prescribed antidepressants, the potential of SSRIs to impair bone healing may adversely affect millions of patients' ability to heal after sustaining trauma. Here, we investigate the effect of the SSRI sertraline on bone healing through pre-treatment with (10 mg·kg-1 sertraline in drinking water, n = 26) or without (control, n = 30) SSRI followed by the creation of a 5-mm calvarial defect. Animals were randomized into three surgical groups: (a) empty/sham, (b) implanted with a DermaMatrix scaffold soak-loaded with sterile PBS or (c) DermaMatrix soak-loaded with 542.5 ng BMP2. SSRI exposure continued until sacrifice in the exposed groups at 4 weeks after surgery. Sertraline exposure resulted in decreased bone healing with significant decreases in trabecular thickness, trabecular number and osteoclast dysfunction while significantly increasing mature collagen fiber formation. These findings indicate that sertraline exposure can impair bone wound healing through disruption of bone repair and regeneration while promoting or defaulting to scar formation within the defect site.


Assuntos
Osteogênese , Inibidores Seletivos de Recaptação de Serotonina , Sertralina , Crânio , Cicatrização , Animais , Masculino , Camundongos , Apoptose , Proteína Morfogenética Óssea 2 , Técnicas de Cultura de Células , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/efeitos adversos , Sertralina/farmacologia , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Crânio/lesões , Cicatrização/efeitos dos fármacos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...