Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 259(3): 237-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25925223

RESUMO

Electron backscatter diffraction (EBSD) on ice is a decade old. We have built upon previous work to select and develop methods of sample preparation and analysis that give >90% success rate in obtaining high-quality EBSD maps, for the whole surface area (potentially) of low porosity (<15%) water ice samples, including very fine-grained (<10 µm) and very large (up to 70 mm by 30 mm) samples. We present and explain two new methods of removing frost and providing a damage-free surface for EBSD: pressure cycle sublimation and 'ironing'. In general, the pressure cycle sublimation method is preferred as it is easier, faster and does not generate significant artefacts. We measure the thermal effects of sample preparation, transfer and storage procedures and model the likelihood of these modifying sample microstructures. We show results from laboratory ice samples, with a wide range of microstructures, to illustrate effectiveness and limitations of EBSD on ice and its potential applications. The methods we present can be implemented, with a modest investment, on any scanning electron microscope system with EBSD, a cryostage and a variable pressure capability.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(4 Pt 2): 046708, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12786530

RESUMO

We present numerical computations for single phase flow through three-dimensional digitized rock fractures under varied simulated confining pressures appropriate to midcrustal depths. The computations are performed using a finite difference, lattice Boltzmann method and thus simulate Navier-Stokes flow. The digitized fracture data sets come from profiled elevations taken on tensile induced fractures in Harcourt granite. Numerical predictions of fracture permeability are compared with laboratory measurements performed on the same fractures. Use of the finite difference lattice Boltzmann method allows computation on nonuniform grid spacing, enabling accurate resolution across the aperture width without extensive refinement in the other two directions.

3.
Icarus ; 144(2): 210-42, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11543391

RESUMO

As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of approximately 10(6) km2 and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to be comparatively young--preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past approximately 10(5)-10(8) years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet--documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason--providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.


Assuntos
Clima Frio , Exobiologia , Marte , Atmosfera/análise , Dióxido de Carbono , Clima , Meio Ambiente Extraterreno , Gelo/análise , Voo Espacial/instrumentação , Voo Espacial/tendências
4.
Science ; 252(5003): 216-25, 1991 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17769266

RESUMO

Inclined zones of earthquakes are the primary expression of lithosphere subduction. A distinct deep population of subduction-zone earthquakes occurs at depths of 350 to 690 kilometers. At those depths ordinary brittle fracture and frictional sliding, the faulting processes of shallow earthquakes, are not expected. A fresh understanding of these deep earthquakes comes from developments in several areas of experimental and theoretical geophysics, including the discovery and characterization of transformational faulting, a shear instability connected with localized phase transformations under nonhydrostatic stress. These developments support the hypothesis that deep earthquakes represent transformational faulting in a wedge of olivine-rich peridotite that is likely to persist metastably in coldest plate interiors to depths as great as 690 km. Predictions based on this deep structure of mantle phase changes are consistent with the global depth distribution of deep earthquakes, the maximum depths of earthquakes in individual subductions zones, and key source characteristics of deep events.

5.
Science ; 191(4231): 1045-6, 1976 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-17772030

RESUMO

Oxidation of iron-rich olivine induced in the laboratory causes preferential precipitation on lattice dislocations. This simple dislocation decoration technique greatly reduces the cost and time involved in surveying the dislocation structures of deformed olivine crystals and opens the way to a more thorough understanding of the deformation of this important geologic material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...