Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(14): 144903, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428388

RESUMO

In a neuron network, synapses update individually using local information, allowing for entirely decentralized learning. In contrast, elements in an artificial neural network are typically updated simultaneously using a central processor. Here, we investigate the feasibility and effect of desynchronous learning in a recently introduced decentralized, physics-driven learning network. We show that desynchronizing the learning process does not degrade the performance for a variety of tasks in an idealized simulation. In experiment, desynchronization actually improves the performance by allowing the system to better explore the discretized state space of solutions. We draw an analogy between desynchronization and mini-batching in stochastic gradient descent and show that they have similar effects on the learning process. Desynchronizing the learning process establishes physics-driven learning networks as truly fully distributed learning machines, promoting better performance and scalability in deployment.


Assuntos
Aprendizagem , Redes Neurais de Computação , Simulação por Computador , Aprendizagem/fisiologia , Neurônios , Física
2.
Phys Rev E ; 103(6-1): 062609, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271712

RESUMO

We investigate the local and long-range structure of several space-filling cellular patterns: bubbles in a quasi-two-dimensional foam, and Voronoi constructions made around points that are uncorrelated (Poisson patterns), low discrepancy (Halton patterns), and displaced from a lattice by Gaussian noise (Einstein patterns). We study local structure with distributions of quantities including cell areas and side numbers. The former is the widest for the bubbles making foams the most locally disordered, while the latter show no major differences between the cellular patterns. To study long-range structure, we begin by representing the cellular systems as patterns of points, both unweighted and weighted by cell area. For this, foams are represented by their bubble centroids and the Voronoi constructions are represented by the centroids as well as the points from which they are created. Long-range structure is then quantified in two ways: by the spectral density, and by a real-space analog where the variance of density fluctuations for a set of measuring windows of diameter D is made more intuitive by conversion to the distance h(D) from the window boundary where these fluctuations effectively occur. The unweighted bubble centroids have h(D) that collapses for the different ages of the foam with random Poissonian fluctuations at long distances. The area-weighted bubble centroids and area-weighted Voronoi points all have constant h(D)=h_{e} for large D; the bubble centroids have the smallest value h_{e}=0.084sqrt[〈a〉], meaning they are the most uniform. Area-weighted Voronoi centroids exhibit collapse of h(D) to the same constant h_{e}=0.084sqrt[〈a〉] as for the bubble centroids. A similar analysis is performed on the edges of the cells and the spectra of h(D) for the foam edges show h(D)∼D^{1-ε} where ε=0.30±0.15.

3.
Phys Rev E ; 103(1-1): 012610, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601566

RESUMO

We present high-precision data for the time evolution of bubble area A(t) and circularity shape parameter C(t) for several bubbles in a quasi-two-dimensional foams consisting of bubbles squashed between parallel plates. In order to fully compare with earlier predictions, foam wetness is systematically varied by controlling the height of the sample above a liquid reservoir which in turn controls the radius r of the inflation of the Plateau borders. For very dry foams, where the borders are very small, classic von Neumann behavior is observed where a bubble's growth rate depends only on its number n of sides. For wet foams, the inflated borders impede gas exchange and cause deviations from von Neumann's law that are found to be in accord with the generalized coarsening equation. In particular, the overall growth rate varies linearly with the film height, which decrease as surface Plateau borders inflate. More interestingly, the deviation from dA/dt∝(n-6) von Neumann behavior grows in proportion to nCr/sqrt[A]. This is highlighted definitively by data for six-sided bubbles, which are forbidden to grow or shrink except for the existence of this term. It is tested quantitatively by variation of all four relevant quantities: n, C, r, and A.

4.
Rev Sci Instrum ; 92(12): 124503, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972443

RESUMO

We describe an experiment container with light scattering and imaging diagnostics for experiments on soft matter aboard the International Space Station (ISS). The suite of measurement capabilities can be used to study different materials in exchangeable sample cell units. The currently available sample cell units and future possibilities for foams, granular media, and emulsions are presented in addition to an overview of the design and the diagnostics of the experiment container. First results from measurements performed on ground and during the commissioning aboard the ISS highlight the capabilities of the experiment container to study the different materials.

5.
Rev Sci Instrum ; 89(7): 075103, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068123

RESUMO

A new experimental facility has been designed and constructed to study driven granular media in a low-gravity environment. This versatile instrument, fully automatized, with a modular design based on several interchangeable experimental cells, allows us to investigate research topics ranging from dilute to dense regimes of granular media such as granular gas, segregation, convection, sound propagation, jamming, and rheology-all without the disturbance by gravitational stresses active on Earth. Here, we present the main parameters, protocols, and performance characteristics of the instrument. The current scientific objectives are then briefly described and, as a proof of concept, some first selected results obtained in low gravity during parabolic flight campaigns are presented.

6.
Rev Sci Instrum ; 89(3): 036107, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604752

RESUMO

We report two techniques to mitigate stripe artifacts in light-sheet fluorescence imaging. The first uses an image processing algorithm called the multidirectional stripe remover method to filter stripes from an existing image. The second uses an elliptical holographic diffuser with strong scattering anisotropy to prevent stripe formation during image acquisition. These techniques facilitate accurate interpretation of image data, especially in denser samples. They are also facile and cost-effective.

7.
Science ; 358(6366): 1033-1037, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170231

RESUMO

When deformed beyond their elastic limits, crystalline solids flow plastically via particle rearrangements localized around structural defects. Disordered solids also flow, but without obvious structural defects. We link structure to plasticity in disordered solids via a microscopic structural quantity, "softness," designed by machine learning to be maximally predictive of rearrangements. Experimental results and computations enabled us to measure the spatial correlations and strain response of softness, as well as two measures of plasticity: the size of rearrangements and the yield strain. All four quantities maintained remarkable commonality in their values for disordered packings of objects ranging from atoms to grains, spanning seven orders of magnitude in diameter and 13 orders of magnitude in elastic modulus. These commonalities link the spatial correlations and strain response of softness to rearrangement size and yield strain, respectively.

8.
Phys Rev E ; 96(3-1): 032805, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346872

RESUMO

For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the dA/dt=K_{0}(n-6) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.

9.
Phys Rev E ; 96(3-1): 032910, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346949

RESUMO

The concept of a hyperuniformity disorder length h was recently introduced for analyzing volume fraction fluctuations for a set of measuring windows [Chieco et al., Phys. Rev. E 96, 032909 (2017).PLEEE81539-375510.1103/PhysRevE.96.032909]. This length permits a direct connection to the nature of disorder in the spatial configuration of the particles and provides a way to diagnose the degree of hyperuniformity in terms of the scaling of h and its value in comparison with established bounds. Here, this approach is generalized for extended particles, which are larger than the image resolution and can lie partially inside and partially outside the measuring windows. The starting point is an expression for the relative volume fraction variance in terms of four distinct volumes: that of the particle, the measuring window, the mean-squared overlap between particle and region, and the region over which particles have nonzero overlap with the measuring window. After establishing limiting behaviors for the relative variance, computational methods are developed for both continuum and pixelated particles. Exact results are presented for particles of special shape and for measuring windows of special shape, for which the equations are tractable. Comparison is made for other particle shapes, using simulated Poisson patterns. And the effects of polydispersity and image errors are discussed. For small measuring windows, both particle shape and spatial arrangement affect the form of the variance. For large regions, the variance scaling depends only on arrangement but particle shape sets the numerical proportionality. The combined understanding permit the measured variance to be translated to the spectrum of hyperuniformity lengths versus region size, as the quantifier of spatial arrangement. This program is demonstrated for a system of nonoverlapping particles at a series of increasing packing fractions as well as for an Einstein pattern of particles with several different extended shapes.

10.
Phys Rev E ; 96(3-1): 032909, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346987

RESUMO

We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns-where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2. Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d) for small f, and h=L/2 for f→1. And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L) versus L. We call this approach "hyperuniformity disorder length spectroscopy".

11.
Phys Rev E ; 94(2-1): 022901, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627374

RESUMO

We study experimentally the dynamics of granular media in a discharging hopper. In such flows, there often appears to be a critical outlet size D_{c} such that the flow never clogs for D>D_{c}. We report on the time-averaged velocity distributions, as well as temporal intermittency in the ensemble-averaged velocity of grains in a viewing window, for both DD_{c}, near and far from the outlet. We characterize the velocity distributions by the standard deviation and the skewness of the distribution of vertical velocities. We propose a measure for intermittency based on the two-sample Kolmogorov-Smirnov D_{KS} statistic for the velocity distributions as a function of time. We find that there is no discontinuity or kink in these various measures as a function of hole size. This result supports the proposition that there is no well-defined D_{c} and that clogging is always possible. Furthermore, the intermittency time scale of the flow is set by the speed of the grains at the hopper exit. This latter finding is consistent with a model of clogging as the independent sampling for stable configurations at the exit with a rate set by the exiting grain speed [C. C. Thomas and D. J. Durian, Phys. Rev. Lett. 114, 178001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.178001].

12.
Phys Rev E ; 94(6-1): 062609, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085450

RESUMO

Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen [Phys. Rev. Lett. 107, 188301 (2011)]PRLTAO0031-900710.1103/PhysRevLett.107.188301 proposed a local rheology unifying dense dry-granular and viscous-suspension flows, but it has been validated only for neutrally buoyant particles in a confined and homogeneous system. Here we generalize the Boyer, Guazzelli, and Pouliquen model to account for the weight of a particle by addition of a pressure P_{0} and test the ability of this model to describe sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to a laminar-shear flow from above, and use refractive-index-matching to track particles' motion and determine local rheology-from the fluid-granular interface to deep in the granular bed. Data from all experiments collapse onto a single curve of friction µ as a function of the viscous number I_{v} over the range 3×10^{-5}≤I_{v}≤2, validating the local rheology model. For I_{v}<3×10^{-5}, however, data do not collapse. Instead of undergoing a jamming transition with µâ†’µ_{s} as expected, particles transition to a creeping regime where we observe a continuous decay of the friction coefficient µ≤µ_{s} as I_{v} decreases. The rheology of this creep regime cannot be described by the local model, and more work is needed to determine whether a nonlocal rheology model can be modified to account for our findings.

13.
Phys Rev Lett ; 114(17): 178001, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978264

RESUMO

We measure the fraction F of flowing grain configurations that precede a clog, based on the average mass discharged between clogging events for various aperture geometries. By tilting the hopper, we demonstrate that F is a function of the hole area projected in the direction of the exiting grain velocity. By varying the length of slits, we demonstrate that grains clog in the same manner as if they were flowing out of a set of smaller independent circular openings. The collapsed data for F can be fit to a decay that is exponential in hole width raised to the power of the system dimensionality. This is consistent with a simple model in which individual grains near the hole have a large but constant probability to precede a clog. Such a picture implies that there is no sharp clogging transition, and that all hoppers have a nonzero probability to clog.

14.
Phys Rev Lett ; 114(10): 108001, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815967

RESUMO

We use machine-learning methods on local structure to identify flow defects-or particles susceptible to rearrangement-in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.

15.
Artigo em Inglês | MEDLINE | ID: mdl-25768493

RESUMO

We present experimental measurements of penetration depths for the impact of spheres into wetted granular media. We observe that the penetration depth in the liquid saturated case scales with projectile density, size, and drop height in a fashion consistent with the scaling observed in the dry case, but with smaller penetrations. Neither viscous drag nor density effects can explain the enhancement to the stopping force. The penetration depth exhibits a complicated dependence on liquid fraction, accompanied by a change in the drop-height dependence, that must be the consequence of accompanying changes in the conformation of the liquid phase in the interstices.

16.
Langmuir ; 31(8): 2421-9, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25646573

RESUMO

Deformation of a fluid interface caused by the presence of objects at the interface can lead to large lateral forces between objects. We explore these fluid-mediated attractive force between partially submerged vertical cylinders. Forces are experimentally measured by slowly separating cylinder pairs and cylinder triplets after capillary rise is initially established for cylinders in contact. For cylinder pairs, numerical computations and a theoretical model are found to be in good agreement with measurements. The model provides insight into the relative importance of the contributions to the total force. For small separations, the lateral force is dominated by the fluid pressure acting over the wetted cylinder surfaces. At large separations, the surface tension acting along the contact line dominates the lateral force. A crossover between the two regimes occurs at a separation of around half of a capillary length. The experimentally measured forces between cylinder triplets are also in good agreement with numerical computations, and we show that pairwise contributions account for nearly all of the attractive force between triplets. For cylinders with an equilibrium capillary rise height greater than the height of the cylinder, we find that the attractive force depends on the height of the cylinders above the submersion level, which provides a means to create precisely controlled tunable cohesive forces between objects deforming a fluid interface.

17.
Eur Phys J E Soft Matter ; 37(10): 97, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25341413

RESUMO

We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.


Assuntos
Absorção Fisico-Química , Chuva/química , Solo/química , Água/química , Hidrogéis/química
18.
Soft Matter ; 10(17): 3027-35, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24695615

RESUMO

We study the rheological behavior of colloidal suspensions composed of soft sub-micron-size hydrogel particles across the liquid-solid transition. The measured stress and strain-rate data, when normalized by thermal stress and time scales, suggest our systems reside in a regime wherein thermal effects are important. In a different vein, critical point scaling predictions for the jamming transition, typical in athermal systems, are tested. Near dynamic arrest, the suspensions exhibit scaling exponents similar to those reported in Nordstrom et al., Phys. Rev. Lett., 2010, 105, 175701. The observation suggests that our system exhibits a glass transition near the onset of rigidity, but it also exhibits a jamming-like scaling further from the transition point. These observations are thought-provoking in light of recent theoretical and simulation findings, which show that suspension rheology across the full range of microgel particle experiments can exhibit both thermal and athermal mechanisms.

19.
Phys Rev Lett ; 111(20): 209602, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289714
20.
Phys Rev Lett ; 111(16): 168002, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182303

RESUMO

We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA