Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(5): 3136-3145, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29320633

RESUMO

The trophodynamics of halogenated flame retardants (HFRs) including polybrominated diphenyl ethers (PBDEs) and alternative HFRs were investigated in the terrestrial, vegetation-caribou-wolf food chain in the Bathurst Region of northern Canada. The greatest concentrations in vegetation (geometric mean of lichens, moss, grasses, willow, and mushrooms) were of the order 2,4,6-tribromophenyl allyl ether (TBP-AE) (10 ng g-1 lw) > BDE47 (5.5 ng g-1 lw) > BDE99 (3.9 ng g-1 lw) > BDE100 (0.82 ng g-1 lw) > 1,2,3,4,5-pentabromobenzene (PBBz) (0.72 ng g-1 lw). Bioconcentration among types of vegetation was consistent, though it was typically greatest in rootless vegetation (lichens, moss). Biomagnification was limited in mammals; only BDE197, BDE206-208 and ∑PBDE biomagnified to caribou from vegetation [biomagnification factors (BMFs) = 2.0-5.1]. Wolves biomagnified BDE28/33, BDE153, BDE154, BDE206, BDE207, and ∑PBDE significantly from caribou (BMFs = 2.9-17) but neither mammal biomagnified any alternative HFRs. Only concentrations of BDE28/33, BDE198, nonaBDEs, and ∑PBDE increased with trophic level, though the magnitude of biomagnification was low relative to legacy, recalcitrant organochlorine contaminants [trophic magnification factors (TMFs) = 1.3-1.8]. Despite bioaccumulation in vegetation and mammals, the contaminants investigated here exhibited limited biomagnification potential and remained at low parts per billion concentrations in wolves.


Assuntos
Retardadores de Chama , Rena , Lobos , Animais , Regiões Árticas , Canadá , Monitoramento Ambiental , Cadeia Alimentar , Éteres Difenil Halogenados
2.
Environ Toxicol Chem ; 35(7): 1695-707, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027986

RESUMO

The distribution of current-use pesticides (CUPs) in seawater and their trophodynamics were investigated in 3 Canadian Arctic marine food chains. The greatest ranges of dissolved-phase concentrations in seawater for each CUP were endosulfan sulfate (less than method detection limit (MDL) to 19 pg L(-1) ) > dacthal (0.76-15 pg L(-1) ) > chlorpyrifos (less than MDL to 8.1 pg L(-1) ) > pentachloronitrobenzene (less than MDL to 2.6 pg L(-1) ) > α-endosulfan (0.20-2.3 pg L(-1) ). Bioaccumulation factors (BAFs, water-respiring organisms) were greatest in plankton, including chlorothalonil (log BAF = 7.4 ± 7.1 L kg(-1) , mean ± standard error), chlorpyrifos (log BAF = 6.9 ± 6.7 L kg(-1) ), and α-endosulfan (log BAF = 6.5 ± 6.0 L kg(-1) ). The largest biomagnification factors (BMFs) were found for dacthal in the capelin:plankton trophic relationship (BMF = 13 ± 5.0) at Cumberland Sound (Nunvavut), and for ß-endosulfan (BMF = 16 ± 4.9) and α-endosulfan (BMF = 9.3 ± 2.8) in the polar bear-ringed seal relationship at Barrow and Rae Strait (NU), respectively. Concentrations of endosulfan sulfate exhibited trophic magnification (increasing concentrations with increasing trophic level) in the poikilothermic portion of the food web (trophic magnification factor = 1.4), but all of the CUPs underwent trophic dilution in the marine mammal food web, despite some trophic level-specific biomagnification. Together, these observations are most likely indicative of metabolism of these CUPs in mammals. Environ Toxicol Chem 2016;35:1695-1707. © 2016 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Praguicidas/análise , Focas Verdadeiras/metabolismo , Água do Mar/química , Ursidae/metabolismo , Poluentes Químicos da Água/análise , Animais , Regiões Árticas , Canadá , Cadeia Alimentar , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Environ Toxicol Chem ; 33(9): 1956-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975230

RESUMO

The bioaccumulation of current use pesticides (CUPs) and stable isotopes of carbon and nitrogen were investigated in vegetation-caribou-wolf food chain in the Bathurst region (Nunavut, Canada). Volumetric bioconcentration factors (BCF(v)) in vegetation were generally greatest for dacthal (10-12) ≥ endosulfan sulfate (10-11) > ß-endosulfan (>9.0-9.7) ≥ pentachloronitrobenzene (PCNB; 8.4-9.6) > α-endosulfan (8.3-9.3) > chlorpyrifos (8.0-8.7) >chlorothalonil (7.6-8.3). The BCF(v) values in vegetation were significantly correlated with the logarithm of the octanol-air partition coefficients (log K(OA)) of CUPs (r(2) = 0.90, p = 0.0040), although dacthal was an outlier and not included in this relationship. Most biomagnification factors (BMFs) for CUPs in caribou:diet comparisons were significantly less than 1. Similarly, the majority of wolf:caribou BMFs were either significantly less than 1 or were not statistically greater than 1. Significant trophic magnification factors (TMFs) were all less than 1, indicating that these CUPs exhibit trophic dilution through this terrestrial food chain. The log K(OA) reasonably predicted bioconcentration in vegetation for most CUPs but was not correlated with BMFs or TMFs in mammals. Our results, along with those of metabolic studies, suggest that mammals actively metabolize these CUPs, limiting their biomagnification potential despite entry into the food chain through effective bioconcentration in vegetation.


Assuntos
Cadeia Alimentar , Praguicidas/análise , Rena/metabolismo , Lobos/metabolismo , Animais , Regiões Árticas , Canadá , Endossulfano/análogos & derivados , Endossulfano/análise , Endossulfano/metabolismo , Monitoramento Ambiental , Nunavut , Praguicidas/metabolismo , Ácidos Ftálicos/análise , Ácidos Ftálicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA