Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2202310119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759674

RESUMO

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Conservação dos Recursos Naturais , Floresta Úmida , Agricultura , Brasil , Carbono , Humanos
2.
Ecotoxicol Environ Saf ; 203: 110947, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678751

RESUMO

Cyantraniliprole was recently registered for controlling the coffee berry borer Hypothenemus hampei, the main coffee pest in the world. In this study, baseline determination and resistance monitoring to cyantraniliprole were carried out in Brazilian populations of H. hampei. Evaluations were carried out for three years with representative field-collected populations from nine coffee-producing states in Brazil, using artificial diet containing the insecticide. The likelihood of control failure due to cyantraniliprole resistance was also determined. Populations from Campo do Meio, Linhares and Jaú were more susceptible (<2-fold resistance) to cyantraniliprole than populations from Patrocínio and Londrina (17-fold). Nonetheless, the frequency of cyantraniliprole resistance insects was low and not significant throughout the regions survey and the likelihood of control failure was negligible. Therefore, cyantraniliprole remains an important management tool against the coffee berry borer without current problems of control failure. However, enough field variation in susceptibility to cyantraniliprole exists justifying attention and careful management of this insecticide to prevent quick development of insecticide resistance in populations of this insect pest species.


Assuntos
Coffea/parasitologia , Controle de Insetos/métodos , Resistência a Inseticidas , Inseticidas/farmacologia , Pirazóis/farmacologia , Gorgulhos/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , Animais , Brasil , Coffea/crescimento & desenvolvimento , Probabilidade , Inquéritos e Questionários
3.
J Invertebr Pathol ; 161: 1-6, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30582929

RESUMO

The resistance of fall armyworm, Spodoptera frugiperda, has been characterized to Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in maize in Brazil. Here, we investigate the cross-resistance to Bt-insecticide XenTari in selected fall armyworm strains resistant to Bt maize varieties. The LC50 of XenTari in neonates of resistant strains ranged from 0.28 to 0.68 µg a.i./cm2, while for the susceptible reference strain (Sus), LC50 was 0.21 µg a.i./cm2. This indicated a resistance ratio lower than 3.2-fold. A similar variation in susceptibility was detected in EC50 values, which ranged from 0.04 to 0.13 µg a.i./cm2, demonstrating a maximum resistance ratio of 4.3-fold relative to the Sus strain (EC50 = 0.03 µg a.i./cm2). In the F1 progeny from reciprocal crosses, the LC50 ranged from 0.28 to 0.64 µg a.i./cm2 and EC50 from 0.03 to 0.18 µg a.i./cm2, similar to the values verified in parental resistant strains and representing a maximum resistance ratio of 3.0 and 6.0-fold, respectively. We also determined that susceptibility of third instar larvae to XenTari decreased when compared to neonates, however the variation remained similar. For third instar larvae from resistant strains, LC50 of XenTari ranged from 10.79 to 39.85 µg a.i./cm2, while for the Sus strain, LC50 was 9.25 µg a.i./cm2 (resistance ratio inferior to 4.3-fold). At the same stage, in heterozygous strains the LC50 ranged from 14.75 to 58.47 µg a.i./cm2 (resistance ratio inferior to 6.3-fold). Our data demonstrate a lack of significant cross-resistance to Bt-based insecticide XenTari in fall armyworm strains with resistance to Bt maize varieties.


Assuntos
Resistência a Inseticidas/genética , Spodoptera/genética , Zea mays/genética , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Bioensaio/métodos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/metabolismo , Plantas Geneticamente Modificadas
4.
Pestic Biochem Physiol ; 143: 73-80, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183613

RESUMO

Control failures with the use of pyrethroid insecticides have been reported frequently for populations of Helicoverpa armigera (Hübner) in Brazil, since its detection in 2013. Here, we confirmed and investigated the metabolic mechanisms of pyrethroid resistance in H. armigera populations from Brazil. Mortality of H. armigera populations was lower than 50% at the highest dose (10µg a.i./3rd instar larva) of the pyrethroids deltamethrin and fenvalerate in dose-response bioassays. Very low mortality (10 to 40%) was obtained at a diagnostic dose of 10µg a.i./larva for each pyrethroid in H. armigera populations collected from different agricultural regions in Brazil, from 2013 to 2016. In synergist bioassays, when larvae were treated with PBO synergist, the mortality of all populations tested was 100%. The frequency of the cytochrome P450 CYP337B3 gene was above 0.95 in all populations of H. armigera. We found only fourteen heterozygous H. armigera out of 497 individuals tested for this gene subfamily. Our results indicated that H. armigera populations from Brazil have different degrees of susceptibility to deltamethrin and fenvalerate, but all populations can be considered tolerant to pyrethroid insecticides. The chimeric P450 CYP337B3 enzyme is one of the main mechanisms of pyrethroid resistance in Brazilian H. armigera populations.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Mariposas/efeitos dos fármacos , Nitrilas/toxicidade , Piretrinas/toxicidade , Animais , Brasil , Larva/efeitos dos fármacos , Larva/genética , Mariposas/genética
5.
PLoS One ; 10(8): e0133139, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26308074

RESUMO

Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests, and to highlight areas where cost savings in carbon stock assessments could be most easily made.


Assuntos
Carbono/análise , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Florestas , Clima Tropical , Mudança Climática , Atividades Humanas , Humanos , Caules de Planta/química , Solo/química , Estatística como Assunto , Fatores de Tempo , Madeira/química
6.
Glob Chang Biol ; 20(12): 3713-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24865818

RESUMO

Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation.


Assuntos
Ciclo do Carbono/fisiologia , Sequestro de Carbono/fisiologia , Conservação dos Recursos Naturais/estatística & dados numéricos , Agricultura Florestal/estatística & dados numéricos , Florestas , Modelos Biológicos , Solo/química , Brasil , Simulação por Computador , Conservação dos Recursos Naturais/métodos , Incêndios , Clima Tropical
7.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120166, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610172

RESUMO

Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Ecossistema , Planejamento Social , Clima Tropical , Biodiversidade , Brasil , Análise Custo-Benefício , Política Ambiental , Agricultura Florestal/economia , Agricultura Florestal/métodos , Atividades Humanas , Humanos , Projetos de Pesquisa , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...