Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Neurobiol Dis ; 173: 105835, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932989

RESUMO

Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Piperidinas , Piridinas , RNA/metabolismo , Convulsões/metabolismo
2.
Epilepsia ; 62(12): 3091-3104, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617595

RESUMO

OBJECTIVE: An attractive target to interfere with epileptic brain hyperexcitability is the enhancement of γ-aminobutyric acidergic (GABAergic) inhibition by inactivation of the GABA-metabolizing enzyme GABA aminotransferase (GABA-AT). GABA-AT inactivators were designed to control seizures by raising brain GABA levels. OV329, a novel drug candidate for the treatment of epilepsy and addiction, has been shown in vitro to be substantially more potent as a GABA-AT inactivator than vigabatrin, an antiseizure drug approved as an add-on therapy for adult patients with refractory complex partial seizures and monotherapy for pediatric patients with infantile spasms. Thus, we hypothesized that OV329 should produce pronounced anticonvulsant effects in two different rat seizure models. METHODS: We therefore examined the effects of OV329 (5, 20, and 40 mg/kg ip) on the seizure threshold of female Wistar Unilever rats, using the timed intravenous pentylenetetrazole (ivPTZ) seizure threshold model as a seizure test particularly sensitive to GABA-potentiating manipulations, and amygdala-kindled rats as a model of difficult-to-treat temporal lobe epilepsy. RESULTS: GABA-AT inactivation by OV329 clearly increased the threshold of both ivPTZ-induced and amygdala-kindled seizures. OV329 further showed a 30-fold greater anticonvulsant potency on ivPTZ-induced myoclonic jerks and clonic seizures compared to vigabatrin investigated previously. Notably, all rats were responsive to OV329 in both seizure models. SIGNIFICANCE: These results reveal an anticonvulsant profile of OV329 that appears to be superior in both potency and efficacy to vigabatrin and highlight OV329 as a highly promising candidate for the treatment of seizures and pharmacoresistant epilepsies.


Assuntos
Epilepsia , Excitação Neurológica , Tonsila do Cerebelo , Animais , Anticonvulsivantes/efeitos adversos , Epilepsia/tratamento farmacológico , Feminino , Humanos , Excitação Neurológica/fisiologia , Pentilenotetrazol/efeitos adversos , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Transaminases/efeitos adversos , Vigabatrina/efeitos adversos , Ácido gama-Aminobutírico/farmacologia
3.
Epilepsia ; 62(11): 2845-2857, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510432

RESUMO

OBJECTIVE: Dravet syndrome is a severe developmental and epileptic encephalopathy (DEE) most often caused by de novo pathogenic variants in SCN1A. Individuals with Dravet syndrome rarely achieve seizure control and have significantly elevated risk for sudden unexplained death in epilepsy (SUDEP). Heterozygous deletion of Scn1a in mice (Scn1a+/- ) recapitulates several core phenotypes, including temperature-dependent and spontaneous seizures, SUDEP, and behavioral abnormalities. Furthermore, Scn1a+/- mice exhibit a similar clinical response to standard anticonvulsants. Cholesterol 24-hydroxlase (CH24H) is a brain-specific enzyme responsible for cholesterol catabolism. Recent research has indicated the therapeutic potential of CH24H inhibition for diseases associated with neural excitation, including seizures. METHODS: In this study, the novel compound soticlestat, a CH24H inhibitor, was administered to Scn1a+/- mice to investigate its ability to improve Dravet-like phenotypes in this preclinical model. RESULTS: Soticlestat treatment reduced seizure burden, protected against hyperthermia-induced seizures, and completely prevented SUDEP in Scn1a+/- mice. Video-electroencephalography (EEG) analysis confirmed the ability of soticlestat to reduce occurrence of electroclinical seizures. SIGNIFICANCE: This study demonstrates that soticlestat-mediated inhibition of CH24H provides therapeutic benefit for the treatment of Dravet syndrome in mice and has the potential for treatment of DEEs.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Piperidinas , Piridinas , Convulsões Febris , Morte Súbita Inesperada na Epilepsia , Animais , Colesterol 24-Hidroxilase/antagonistas & inibidores , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsia/genética , Síndromes Epilépticas , Camundongos , Mortalidade Prematura , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Piperidinas/farmacologia , Piridinas/farmacologia , Convulsões/etiologia , Convulsões/genética , Convulsões Febris/tratamento farmacológico , Morte Súbita Inesperada na Epilepsia/etiologia
4.
Epilepsy Res ; 174: 106646, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940389

RESUMO

OBJECTIVE: To evaluate the safety, tolerability, and pharmacokinetics of soticlestat, a first-in-class cholesterol 24-hydroxylase inhibitor, in adults with developmental and/or epileptic encephalopathies (DEE). METHODS: The study comprised a 30-day, randomized, double-blind, placebo-controlled phase (Part A), followed by a 55-day open-label phase (Part B) (ClinicalTrials.gov ID: NCT03166215) . In Part A, patients with DEE and at least one bilateral motor seizure during the 4-week prospective baseline period were randomized 4:1 to receive soticlestat or placebo, in addition to their usual antiseizure medication. In Part B, all patients received open-label soticlestat. Soticlestat doses were titrated according to tolerability to a maximum of 300 mg twice daily (BID). Safety evaluations included the incidence of treatment-emergent adverse events (TEAEs). Plasma soticlestat concentrations were measured at various times for determination of multiple-dose pharmacokinetics and 24S-hydroxycholesterol (24HC). Efficacy was assessed by evaluation of changes in seizure frequency from baseline. RESULTS: Eighteen patients (median age, 28.5 years) were enrolled and randomized, and 14 (78 %) completed the study. In Part A, TEAEs occurred in 71.4 % of soticlestat-treated patients and 100 % of placebo-treated patients. In Part B, the overall incidence of TEAEs was 68.8 %. In Part A, TEAEs that occurred in more than one patient in the soticlestat group were dysarthria (n = 3, 21.4 %), lethargy (n = 2, 14.3 %), upper respiratory tract infection (n = 2, 14.3 %), fatigue (n = 2, 14.3 %), and headache (n = 2, 14.3 %). Four patients discontinued treatment because of TEAEs, of whom two reported drug-related seizure clusters as serious TEAEs. There were no deaths. Pharmacokinetic analysis showed dose-dependent increases in systemic exposure and peak plasma soticlestat concentrations. At the end of Part B, the overall mean percent change from baseline in plasma 24HC was -80.97 %. Changes from baseline in median seizure frequency were +16.71 % and +22.16 % in the soticlestat and placebo groups, respectively, in Part A, and -36.38 % in all participants in Part B. CONCLUSION: Soticlestat was well tolerated at doses of up to 300 mg BID and was associated with a reduction in median seizure frequency over the study duration. Further studies are warranted to assess the possible efficacy of soticlestat as adjunctive therapy in patients with DEEs such as Dravet syndrome and Lennox-Gastaut syndrome.


Assuntos
Anticonvulsivantes , Síndrome de Lennox-Gastaut , Adulto , Anticonvulsivantes/efeitos adversos , Método Duplo-Cego , Quimioterapia Combinada , Humanos , Síndrome de Lennox-Gastaut/tratamento farmacológico , Piperidinas/efeitos adversos , Estudos Prospectivos , Piridinas/efeitos adversos , Resultado do Tratamento
5.
Neurology ; 96(7): e1024-e1035, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33443117

RESUMO

OBJECTIVE: To evaluate safety and tolerability and exploratory efficacy end points for gaboxadol (OV101) compared with placebo in individuals with Angelman syndrome (AS). METHODS: Gaboxadol is a highly selective orthosteric agonist that activates δ-subunit-containing extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. In a multicenter, double-blind, placebo-controlled, parallel-group trial, adolescent and adult individuals with a molecular diagnosis of AS were randomized (1:1:1) to 1 of 3 dosing regimens for a duration of 12 weeks: placebo morning dose and gaboxadol 15 mg evening dose (qd), gaboxadol 10 mg morning dose and 15 mg evening dose (bid), or placebo morning and evening dose. Safety and tolerability were monitored throughout the study. Prespecified exploratory efficacy end points included adapted Clinical Global Impression-Severity and Clinical Global Impression-Improvement (CGI-I) scales, which documented the clinical severity at baseline and change after treatment, respectively. RESULTS: Eighty-eight individuals were randomized. Of 87 individuals (aged 13-45 years) who received at least 1 dose of study drug, 78 (90%) completed the study. Most adverse events (AEs) were mild to moderate, and no life-threatening AEs were reported. Efficacy of gaboxadol, as measured by CGI-I improvement in an exploratory analysis, was observed in gaboxadol qd vs placebo (p = 0.0006). CONCLUSION: After 12 weeks of treatment, gaboxadol was found to be generally well-tolerated with a favorable safety profile. The efficacy as measured by the AS-adapted CGI-I scale warrants further studies. CLINICALTRIALSGOV IDENTIFIER: NCT02996305. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that, for individuals with AS, gaboxadol is generally safe and well-tolerated.


Assuntos
Síndrome de Angelman/tratamento farmacológico , Agonistas GABAérgicos/administração & dosagem , Isoxazóis/administração & dosagem , Adolescente , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Humanos , Isoxazóis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
6.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182365

RESUMO

Ischaemic brain damage induces autoimmune responses, including the production of autoantibodies with potential neuroprotective effects. Platelets share unexplained similarities with neurons, and the formation of anti-platelet antibodies has been documented in neurological disorders. The aim of this study was to investigate the presence of anti-platelet antibodies in the peripheral blood of patients after ischaemic stroke and determine any clinical correlations. Using a flow cytometry-based platelet immunofluorescence method, we detected platelet-reactive antibodies in 15 of 48 (31%) stroke patients and two of 50 (4%) controls (p < 0.001). Western blotting revealed heterogeneous reactivities with platelet proteins, some of which overlapped with brain proteins. Stroke patients who carried anti-platelet antibodies presented with larger infarcts and more severe neurological dysfunction, which manifested as higher scores on the National Institutes of Health Stroke Scale (NIHSS; p = 0.009), but they had a greater recovery in the NIHSS by the time of hospital discharge (day 7 ± 2) compared with antibody-negative patients (p = 0.043). Antibodies from stroke sera reacted more strongly with activated platelets (p = 0.031) and inhibited platelet aggregation by up to 30.1 ± 2.8% (p < 0.001), suggesting the potential to interfere with thrombus formation. In conclusion, platelet-reactive antibodies can be found in patients soon after ischaemic stroke and correlate with better short-term outcomes, suggesting a potential novel mechanism limiting thrombosis.


Assuntos
Autoanticorpos/imunologia , Plaquetas/imunologia , Isquemia Encefálica/imunologia , AVC Isquêmico/imunologia , Idoso , Autoimunidade/imunologia , Coagulação Sanguínea/imunologia , Feminino , Humanos , Masculino , Agregação Plaquetária/imunologia , Contagem de Plaquetas/métodos , Trombose/imunologia
7.
Sci Rep ; 10(1): 17081, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051477

RESUMO

Cholesterol 24-hydroxylase (CH24H) is a brain-specific enzyme that converts cholesterol into 24S-hydroxycholesterol, the primary mechanism of cholesterol catabolism in the brain. The therapeutic potential of CH24H activation has been extensively investigated, whereas the effects of CH24H inhibition remain poorly characterized. In this study, the therapeutic potential of CH24H inhibition was investigated using a newly identified small molecule, soticlestat (TAK-935/OV935). The biodistribution and target engagement of soticlestat was assessed in mice. CH24H-knockout mice showed a substantially lower level of soticlestat distribution in the brain than wild-type controls. Furthermore, brain-slice autoradiography studies demonstrated the absence of [3H]soticlestat staining in CH24H-knockout mice compared with wild-type mice, indicating a specificity of soticlestat binding to CH24H. The pharmacodynamic effects of soticlestat were characterized in a transgenic mouse model carrying mutated human amyloid precursor protein and presenilin 1 (APP/PS1-Tg). These mice, with excitatory/inhibitory imbalance and short life-span, yielded a remarkable survival benefit when bred with CH24H-knockout animals. Soticlestat lowered brain 24S-hydroxycholesterol in a dose-dependent manner and substantially reduced premature deaths of APP/PS1-Tg mice at a dose lowering brain 24S-hydroxycholesterol by approximately 50%. Furthermore, microdialysis experiments showed that soticlestat can suppress potassium-evoked extracellular glutamate elevations in the hippocampus. Taken together, these data suggest that soticlestat-mediated inhibition of CH24H may have therapeutic potential for diseases associated with neural hyperexcitation.


Assuntos
Colesterol 24-Hidroxilase/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Colesterol 24-Hidroxilase/deficiência , Colesterol 24-Hidroxilase/genética , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Longevidade/efeitos dos fármacos , Longevidade/genética , Longevidade/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Piperidinas/química , Piperidinas/farmacocinética , Presenilina-1/genética , Presenilina-1/metabolismo , Piridinas/química , Piridinas/farmacocinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Front Behav Neurosci ; 13: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293404

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.

9.
Sci Adv ; 5(4): eaaw1567, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31001591

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) derived from muscarinic receptors not only are a powerful tool to test causality in basic neuroscience but also are potentially amenable to clinical translation. A major obstacle, however, is that the widely used agonist clozapine N-oxide undergoes conversion to clozapine, which penetrates the blood-brain barrier but has an unfavorable side effect profile. Perlapine has been reported to activate DREADDs at nanomolar concentrations but is not approved for use in humans by the Food and Drug Administration or the European Medicines Agency, limiting its translational potential. Here, we report that the atypical antipsychotic drug olanzapine, widely available in various formulations, is a potent agonist of the human M4 muscarinic receptor-based DREADD, facilitating clinical translation of chemogenetics to treat central nervous system diseases.


Assuntos
Drogas Desenhadas/farmacologia , Olanzapina/química , Olanzapina/farmacologia , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/genética , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Simulação por Computador , Drogas Desenhadas/química , Ensaios de Triagem em Larga Escala , Humanos , Transdução de Sinais
10.
Sci Transl Med ; 10(469)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487248

RESUMO

Gene therapy is emerging as a promising approach for treating neurological disorders, including Parkinson's disease (PD). A phase 2 clinical trial showed that delivering glutamic acid decarboxylase (GAD) into the subthalamic nucleus (STN) of patients with PD had therapeutic effects. To determine the mechanism underlying this response, we analyzed metabolic imaging data from patients who received gene therapy and those randomized to sham surgery, all of whom had been scanned preoperatively and at 6 and 12 months after surgery. Those who received GAD gene therapy developed a unique treatment-dependent polysynaptic brain circuit that we termed as the GAD-related pattern (GADRP), which reflected the formation of new polysynaptic functional pathways linking the STN to motor cortical regions. Patients in both the treatment group and the sham group expressed the previously reported placebo network (the sham surgery-related pattern or SSRP) when blinded to the treatment received. However, only the appearance of the GADRP correlated with clinical improvement in the gene therapy-treated subjects. Treatment-induced brain circuits can thus be useful in clinical trials for isolating true treatment responses and providing insight into their underlying biological mechanisms.


Assuntos
Encéfalo/fisiopatologia , Terapia Genética , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Encéfalo/metabolismo , Dependovirus/metabolismo , Progressão da Doença , Feminino , Glutamato Descarboxilase , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Núcleo Subtalâmico , Resultado do Tratamento
11.
Res Pract Thromb Haemost ; 2(1): 125-138, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30046713

RESUMO

BACKGROUND: N-methyl-d-aspartate receptors (NMDARs) contribute calcium influx in megakaryocytic cells but their roles remain unclear; both pro- and anti-differentiating effects have been shown in different contexts. OBJECTIVES: The aim of this study was to clarify NMDAR contribution to megakaryocytic differentiation in both normal and leukemic cells. METHODS: Meg-01, Set-2, and K-562 leukemic cell lines were differentiated using phorbol-12-myristate-13-acetate (PMA, 10 nmol L-1) or valproic acid (VPA, 500 µmol L-1). Normal megakaryocytes were grown from mouse marrow-derived hematopoietic progenitors (lineage-negative and CD41a-enriched) in the presence of thrombopoietin (30-40 nmol L-1). Marrow explants were used to monitor proplatelet formation in the native bone marrow milieu. In all culture systems, NMDARs were inhibited using memantine and MK-801 (100 µmol L-1); their effects compared against appropriate controls. RESULTS: The most striking observation from our studies was that NMDAR antagonists markedly inhibited proplatelet formation in all primary cultures employed. Proplatelets were either absent (in the presence of memantine) or short, broad and intertwined (with MK-801). Earlier steps of megakaryocytic differentiation (acquisition of CD41a and nuclear ploidy) were maintained, albeit reduced. In contrast, in leukemic Meg-01 cells, NMDAR antagonists inhibited differentiation in the presence of PMA and VPA but induced differentiation when applied by themselves. CONCLUSIONS: NMDAR-mediated calcium influx is required for normal megakaryocytic differentiation, in particular proplatelet formation. However, in leukemic cells, the main NMDAR role is to inhibit differentiation, suggesting diversion of NMDAR activity to support leukemia growth. Further elucidation of the NMDAR and calcium pathways in megakaryocytic cells may suggest novel ways to modulate abnormal megakaryopoiesis.

12.
Seizure ; 55: 25-29, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29367144

RESUMO

PURPOSE: Epilepsy is a common neurological condition characterised by recurrent unprovoked seizures and often treatable with appropriate medication. However, almost 30% of cases are pharmacoresistant and while a proportion of these may be amenable to resective surgery, a gene therapy approach could be an attractive alternative option. Neuropeptide Y (NPY) has anticonvulsant and anti-epileptogenic properties in animal models of temporal lobe epilepsy when delivered by an adeno-associated viral (AAV) vector. Here we sought to demonstrate successful secretion of NPY from AAV-transduced human neuronal cells, which would be essential in planning any clinical trial. METHODS: A human neuroblastoma cell line (SH-SY5Y) was used to assess in vitro whether an AAV vector manufactured to clinical-grade protocols would be effective at transducing these cells to express NPY. Optimal transduction efficiency was first achieved with retinoic acid and tetradecanoylphorpol-13-acetate (TPA) treatment, prior to expose to AAV1-green fluorescent protein (GFP) reporter vector, AAV1-NPY therapeutic vector or sham treated with no vector. Levels of NPY in cell supernatants were determined using two antibody-based methods RESULTS: We found that the levels of NPY released into the cell culture media supernatant, and protein extracts of the cell pellet, were significantly higher following exposure to AAV1-NPY than when compared to either a control GFP reporter vector (AAV1-GFP) or sham treated controls. CONCLUSION: This first demonstration that an AAV-NPY construct can successfully transduce human neuronal cells supports the pre-clinical development of a clinical trial using AAV-based NPY for pharmacoresistant epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Vetores Genéticos/metabolismo , Neurônios/citologia , Neuropeptídeo Y/metabolismo , Linhagem Celular Tumoral , Dependovirus/metabolismo , Terapia Genética/métodos , Humanos , Neuroblastoma/metabolismo , Neurônios/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(42): 11211-11216, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973921

RESUMO

Optogenetic strategies to restore vision in patients who are blind from end-stage retinal degenerations aim to render remaining retinal cells light sensitive once photoreceptors are lost. Here, we assessed long-term functional outcomes following subretinal delivery of the human melanopsin gene (OPN4) in the rd1 mouse model of retinal degeneration using an adeno-associated viral vector. Ectopic expression of OPN4 using a ubiquitous promoter resulted in cellular depolarization and ganglion cell action potential firing. Restoration of the pupil light reflex, behavioral light avoidance, and the ability to perform a task requiring basic image recognition were restored up to 13 mo following injection. These data suggest that melanopsin gene therapy via a subretinal route may be a viable and stable therapeutic option for the treatment of end-stage retinal degeneration in humans.


Assuntos
Terapia Genética/métodos , Degeneração Retiniana/terapia , Opsinas de Bastonetes/genética , Animais , Dependovirus , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C3H , Visão Ocular
14.
J Neurosci ; 37(28): 6729-6740, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607169

RESUMO

Dysregulation of cell cycle machinery is implicated in a number of neuronal death contexts, including stroke. Increasing evidence suggests that cyclin-dependent kinases (Cdks) are inappropriately activated in mature neurons under ischemic stress conditions. We previously demonstrated a functional role for the cyclin D1/Cdk4/pRb (retinoblastoma tumor suppressor protein) pathway in delayed neuronal death induced by ischemia. However, the molecular signals leading to cyclin D/Cdk4/pRb activation following ischemic insult are presently not clear. Here, we investigate the cell division cycle 25 (Cdc25) dual-specificity phosphatases as potential upstream regulators of ischemic neuronal death and Cdk4 activation. We show that a pharmacologic inhibitor of Cdc25 family members (A, B, and C) protects mouse primary neurons from hypoxia-induced delayed death. The major contributor to the death process appears to be Cdc25A. shRNA-mediated knockdown of Cdc25A protects neurons in a delayed model of hypoxia-induced death in vitro Similar results were observed in vivo following global ischemia in the rat. In contrast, neurons singly or doubly deficient for Cdc25B/C were not significantly protective. We show that Cdc25A activity, but not level, is upregulated in vitro following hypoxia and global ischemic insult in vivo Finally, we show that shRNA targeting Cdc25A blocks Ser795 pRb phosphorylation. Overall, our results indicate a role for Cdc25A in delayed neuronal death mediated by ischemia.SIGNIFICANCE STATEMENT A major challenge in stroke is finding an effective neuroprotective strategy to treat cerebral ischemic injury. Cdc25 family member A (Cdc25A) is a phosphatase normally activated during cell division in proliferating cells. We found that Cdc25A is activated in neurons undergoing ischemic stress mediated by hypoxia in vitro and global cerebral ischemia in rats in vivo We show that pharmacologic or genetic inhibition of Cdc25A activity protects neurons from delayed death in vitro and in vivo Downregulation of Cdc25A led to reduction in retinoblastoma tumor suppressor protein (pRb) phosphorylation. An increase in pRb phosphorylation has been previously linked to ischemic neuronal death. Our results identify Cdc25A as a potential target for neuroprotectant strategy for the treatment of delayed ischemic neuronal death.


Assuntos
Apoptose , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosfatases cdc25/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
15.
JCI Insight ; 2(7): e90133, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28405611

RESUMO

BACKGROUND. We report the 12-month clinical and imaging data on the effects of bilateral delivery of the glutamic acid decarboxylase gene into the subthalamic nuclei (STN) of advanced Parkinson's disease (PD) patients. METHODS. 45 PD patients were enrolled in a 6-month double-blind randomized trial of bilateral AAV2-GAD delivery into the STN compared with sham surgery and were followed for 12 months in open-label fashion. Subjects were assessed with clinical outcome measures and 18F-fluorodeoxyglucose (FDG) PET imaging. RESULTS. Improvements under the blind in Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in the AAV2-GAD group compared with the sham group continued at 12 months [time effect: F(4,138) = 11.55, P < 0.001; group effect: F(1,35) = 5.45, P < 0.03; repeated-measures ANOVA (RMANOVA)]. Daily duration of levodopa-induced dyskinesias significantly declined at 12 months in the AAV2-GAD group (P = 0.03; post-hoc Bonferroni test), while the sham group was unchanged. Analysis of all FDG PET images over 12 months revealed significant metabolic declines (P < 0.001; statistical parametric mapping RMANOVA) in the thalamus, striatum, and prefrontal, anterior cingulate, and orbitofrontal cortices in the AAV2-GAD group compared with the sham group. Across all time points, changes in regional metabolism differed for the two groups in all areas, with significant declines only in the AAV2-GAD group (P < 0.005; post-hoc Bonferroni tests). Furthermore, baseline metabolism in the prefrontal cortex (PFC) correlated with changes in motor UPDRS scores; the higher the baseline PFC metabolism, the better the clinical outcome. CONCLUSION. These findings show that clinical benefits after gene therapy with STN AAV2-GAD in PD patients persist at 12 months. TRIAL REGISTRATION. ClinicalTrials.gov NCT00643890. FUNDING. Neurologix Inc.


Assuntos
Terapia Genética/métodos , Glutamato Descarboxilase/genética , Doença de Parkinson/terapia , Adulto , Idoso , Dependovirus , Método Duplo-Cego , Feminino , Seguimentos , Técnicas de Transferência de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Parvovirinae , Tomografia por Emissão de Pósitrons , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiopatologia , Resultado do Tratamento , Estados Unidos
16.
Platelets ; 28(8): 799-811, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28277064

RESUMO

GluN1 is a mandatory component of N-methyl-D-aspartate receptors (NMDARs) best known for their roles in the brain, but with increasing evidence for relevance in peripheral tissues, including platelets. Certain anti-GluN1 antibodies reduce brain infarcts in rodent models of ischaemic stroke. There is also evidence that human anti-GluN1 autoantibodies reduce neuronal damage in stroke patients, but the underlying mechanism is unclear. This study investigated whether anti-GluN1-mediated neuroprotection involves inhibition of platelet function. Four commercial anti-GluN1 antibodies were screened for their abilities to inhibit human platelet aggregation. Haematological parameters were examined in rats vaccinated with GluN1. Platelet effects of a mouse monoclonal antibody targeting the glycine-binding region of GluN1 (GluN1-S2) were tested in assays of platelet activation, aggregation and thrombus formation. The epitope of anti-GluN1-S2 was mapped and the mechanism of antibody action modelled using crystal structures of GluN1. Our work found that rats vaccinated with GluN1 had a mildly prolonged bleeding time and carried antibodies targeting mostly GluN1-S2. The monoclonal anti-GluN1-S2 antibody (from BD Biosciences) inhibited activation and aggregation of human platelets in the presence of adrenaline, adenosine diphosphate, collagen, thrombin and a protease-activated receptor 1-activating peptide. When human blood was flowed over collagen-coated surfaces, anti-GluN1-S2 impaired thrombus growth and stability. The epitope of anti-GluN1-S2 was mapped to α-helix H located within the glycine-binding clamshell of GluN1, where the antibody binding was computationally predicted to impair opening of the NMDAR channel. Our results indicate that anti-GluN1-S2 inhibits function of human platelets, including dense granule release and thrombus growth. Findings add to the evidence that platelet NMDARs regulate thrombus formation and suggest a novel mechanism by which anti-GluN1 autoantibodies limit stroke-induced neuronal damage.


Assuntos
Autoanticorpos/sangue , Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Trombose/genética , Animais , Humanos , Masculino , Ratos , Ratos Wistar
18.
Cell Calcium ; 60(6): 384-395, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27659111

RESUMO

GRIN2A mutations are frequent in melanoma tumours but their role in disease is not well understood. GRIN2A encodes a modulatory subunit of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that certain GRIN2A mutations increase NMDAR function and support melanoma growth through oncogenic effects. This hypothesis was tested using 19 low-passage melanoma cell lines, four of which carried novel missense mutations in GRIN2A that we previously reported. We examined NMDAR expression, function of a calcium ion (Ca2+) channel and its contribution to cell growth using pharmacological modulators; findings were correlated with the presence or absence of GRIN2A mutations. We found that NMDAR expression was low in all melanoma cell lines, independent of GRIN2A mutations. In keeping with this, NMDAR-mediated Ca2+ influx and its contribution to cell proliferation were weak in most cell lines. However, certain GRIN2A mutations and culture media with lower glutamate levels enhanced NMDAR effects on cell growth and invasion. The main finding was that G762E was associated with higher glutamate-mediated Ca2+ influx and stronger NMDAR contribution to cell proliferation, compared with wild-type GRIN2A and other GRIN2A mutations. The pro-invasive phenotype of mutated cell lines was increased in culture medium containing less glutamate, implying environmental modulation of mutation effects. In conclusion, NMDAR ion channel function is low in cultured melanoma cells but supports cell proliferation and invasion. Selected GRIN2A mutations, such as G762E, are associated with oncogenic consequences that can be modulated by extracellular glutamate. Primary cultures may be better suited to determine the role of the NMDAR in melanoma in vivo.


Assuntos
Ácido Glutâmico/farmacologia , Melanoma/genética , Receptores de N-Metil-D-Aspartato/genética , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Melanoma/patologia , Mutação , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
19.
Sarcoma ; 2016: 1830849, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190495

RESUMO

Background. Radiation therapy is a form of adjuvant care used in many oncological treatment protocols. However, nonmalignant neighboring tissues are harmed as a result of this treatment. Therefore, the goal of this study was to induce the production of survivin, an antiapoptotic protein, to determine if this protein could provide protection to noncancerous cells during radiation exposure. Methods. Using a murine model, a recombinant adenoassociated virus (rAAV) was used to deliver survivin to the treatment group and yellow fluorescence protein (YFP) to the control group. Both groups received targeted radiation. Visual inspection, gait analysis, and tissue histology were used to determine the extent of damage caused by the radiation. Results. The YFP group demonstrated ulceration of the irradiated area while the survivin treated mice exhibited only hair loss. Histology showed that the YFP treated mice experienced dermal thickening, as well as an increase in collagen that was not present in the survivin treated mice. Gait analysis demonstrated a difference between the two groups, with the YFP mice averaging a lower speed. Conclusions. The use of gene-modification to induce survivin expression in normal tissues allows for the protection of nontarget areas from the negative side effects normally associated with ionizing radiation.

20.
Cell Signal ; 27(9): 1860-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25982509

RESUMO

Human megakaryocytes release glutamate and express glutamate-gated Ca(2+)-permeable N-methyl-D-aspartate receptors (NMDARs) that support megakaryocytic maturation. While deregulated glutamate pathways impact oncogenicity in some cancers, the role of glutamate and NMDARs in megakaryocytic malignancies remains unknown. The aim of this study was to determine if NMDARs participate in Ca(2+) responses in leukemic megakaryoblasts and if so, whether modulating NMDAR activity could influence cell growth. Three human cell lines, Meg-01, Set-2 and K-562 were used as models of leukemic megakaryoblasts. NMDAR components were examined in leukemic cells and human bone marrow, including in megakaryocytic disease. Well-established NMDAR modulators (agonists and antagonists) were employed to determine NMDAR effects on Ca(2+) flux, cell viability, proliferation and differentiation. Leukemic megakaryoblasts contained combinations of NMDAR subunits that differed from normal bone marrow and the brain. NMDAR agonists facilitated Ca(2+) entry into Meg-01 cells, amplified Ca(2+) responses to adenosine diphosphate (ADP) and promoted growth of Meg-01, Set-2 and K-562 cells. Low concentrations of NMDAR inhibitors (riluzole, memantine, MK-801 and AP5; 5-100µM) were weakly cytotoxic but mainly reduced cell numbers by suppressing proliferation. The use-dependent NMDAR inhibitor, memantine (100µM), reduced numbers and proliferation of Meg-01 cells to less than 20% of controls (IC50 20µM and 36µM, respectively). In the presence of NMDAR inhibitors cells acquired morphologic and immunophenotypic features of megakaryocytic differentiation. In conclusion, NMDARs provide a novel pathway for Ca(2+) entry into leukemic megakaryoblasts that supports cell proliferation but not differentiation. NMDAR inhibitors counteract these effects, suggesting a novel opportunity to modulate growth of leukemic megakaryoblasts.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Ácido Glutâmico/metabolismo , Leucemia Megacarioblástica Aguda/metabolismo , Feminino , Humanos , Células K562 , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Masculino , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...