Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(9): 1092, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37620680

RESUMO

The input of trace elements from a small urban river (Las River, Toulon, France) located on the northern Mediterranean coast was studied during both base flow and flood events. A 2-year monitoring period of water flow and suspended particulate matter (SPM) showed a typical Mediterranean hydrological regime: a strong increase in water flow and SPM during short flood periods. During the flood event, an up to 2-fold increase in dissolved trace element (DTM) concentrations and particulate trace element content in SPM (PTM) was observed compared to the baseline discharge. The enrichment factor of elements in the SPM ranges from low or moderate for Co, Ni and Cr (1.0-4.7) to extremely high for Cd (157). However, the enrichment factors decrease from base flow to flood, indicating a dilution effect with a large yield of weathering particles with higher particle size. The most significant total trace element loading occurred during flood, ranging from 78% for As and Ni to 91% for Pb, while PTM loading during flood ranged from 35% for As to 77% for Pb. The specific dissolved fluxes during the flood are significantly higher for Pb, Cu and Zn than in the surrounding rivers, indicating specificity in the catchment (lithology). This study shows the importance of monitoring the transport of pollutants through small urban rivers and their potential impact on the coastal region, especially when they enter small and closed bays, as a receiving pool.


Assuntos
Oligoelementos , Chumbo , Rios , Monitoramento Ambiental , Material Particulado , Água
2.
Front Microbiol ; 12: 589948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679628

RESUMO

Trace metal (TM) contamination in marine coastal areas is a worldwide threat for aquatic communities. However, little is known about the influence of a multi-chemical contamination on both marine biofilm communities' structure and functioning. To determine how TM contamination potentially impacted microbial biofilms' structure and their functions, polycarbonate (PC) plates were immerged in both surface and bottom of the seawater column, at five sites, along strong TM contamination gradients, in Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe prokaryotic community diversity, structure and functions, and to determine the relationships between bacterioplankton and biofilm communities. Our results showed that prokaryotic biofilm structure was not significantly affected by the measured environmental variables, while the functional profiles of biofilms were significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-degrading microorganisms. Functions related to major xenobiotics biodegradation and metabolism, such as methane metabolism, degradation of aromatic compounds, and benzoate degradation, as well as functions involved in quorum sensing signaling, extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly over-represented in the contaminated site relative to the uncontaminated one. Taken together, our results suggest that biofilms may be able to survive to strong multi-chemical contamination because of the presence of tolerant taxa in biofilms, as well as the functional responses of biofilm communities. Moreover, biofilm communities exhibited significant variations of structure and functional profiles along the seawater column, potentially explained by the contribution of taxa from surrounding sediments. Finally, we found that both structure and functions were significantly distinct between the biofilm and bacterioplankton, highlighting major differences between the both lifestyles, and the divergence of their responses facing to a multi-chemical contamination.

3.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188980

RESUMO

Our understanding of environmental factors controlling prokaryotic community is largely hampered by the large environmental variability across spatial scales (e.g. trace metal contamination, nutrient enrichment and physicochemical variations) and the broad diversity of bacterial pre-exposure to environmental factors. In this article, we investigated the specific influence of copper (Cu) and lead (Pb) on prokaryotic communities from the uncontaminated site, using mesocosm experiments. In addition, we studied how pre-exposure (i.e. life history) affects communities, with reference to previous metal exposure on the response of three prokaryotic communities to similar Cu exposition. This study showed a stronger influence of Cu contamination than Pb contamination on prokaryotic diversity and structure. We identified 12 and 34 bacterial families and genera, respectively, contributing to the significant differences observed in community structure between control and spiked conditions. Taken altogether, our results point toward a combination of direct negative responses to Cu contamination and indirect responses mediated by interaction with phytoplankton. These identified responses were largely conditioned by the previous exposure of community to contaminants.


Assuntos
Cobre , Chumbo , Cobre/toxicidade , Monitoramento Ambiental , Chumbo/toxicidade , Fitoplâncton , Células Procarióticas , Água do Mar
4.
Sci Total Environ ; 712: 135565, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31787275

RESUMO

The Sierra Huautla (Morelos State, Mexico) is a biological reserve with historical mines of Ag and Pb. In this area, waters used by inhabitants are contaminated by arsenic (As). An integrated environmental survey was realized both in waters and sediments to better constrain the source and the mobility of As and other trace elements. Two areas of interest were selected: (1) the Nexpa River ecosystem to determine the local geochemical background, and (2) the Huautla area, affected by past mining activities. This study allowed the definition of the local geochemical baseline in sediments or in waters, demonstrated uncontaminated by TE in the Nexpa area, except for As in the dissolved phase or for Cd in Suspended Particulate Matters (SPM). In the Huautla area, TE contents in water were higher than the World Health Organization (WHO) limits for Al, As and Mn in unfiltered waters, and only for As in the dissolved phase. Speciation analyses revealed arsenic to be present only as the toxic-inorganic arsenate species, As(+V). In SPM, Ag, As, Cd and Zn concentrations were higher than Sediment Quality Guidelines (SQG). The different geochemical indice (EF: 5, PLI: 3, EF: Igeo: 5-3) demonstrated that SPM were significantly contaminated and consistute an health risk for Huautla inhabitants exposed to As-contaminated waters and TE-rich SPM. The combination of mineralogy, chemistry, C and S stable isotopes with thermodynamic modeling indicate dissolutions of minerals from local geological formations, sorption-desorption phenomena from clays and oxy-hydroxides, and the weathering responsible for the transport of the TE-rich SPM (1.8 wt% for 17% of the total TE concentration). Moreover, the past mining activity would be a source of the contamination only for As in waters from flooded mines.

5.
Front Microbiol ; 10: 257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853948

RESUMO

Unraveling the relative importance of both environmental conditions and ecological processes regulating bacterioplankton communities is a central goal in microbial ecology. Marine coastal environments are among the most urbanized areas and as a consequence experience environmental pressures. The highly anthropized Toulon Bay (France) was considered as a model system to investigate shifts in bacterioplankton communities along natural and anthropogenic physicochemical gradients during a 1-month survey. In depth geochemical characterization mainly revealed strong and progressive Cd, Zn, Cu, and Pb contamination gradients between the entrance of the Bay and the north-western anthropized area. On the other hand, low-amplitude natural gradients were observed for other environmental variables. Using 16S rRNA gene sequencing, we observed strong spatial patterns in bacterioplankton taxonomic and predicted function structure along the chemical contamination gradient. Variation partitioning analysis demonstrated that multiple metallic contamination explained the largest part of the spatial biological variations observed, but DOC and salinity were also significant contributors. Network analysis revealed that biotic interactions were far more numerous than direct interactions between microbial groups and environmental variables. This suggests indirect effects of the environment, and especially trace metals, on the community through a few taxonomic groups. These spatial patterns were also partially found for predicted bacterioplankton functions, thus indicating a limited functional redundancy. All these results highlight both potential direct influences of trace metals contamination on coastal bacterioplankton and indirect forcing through biotic interactions and cascading.

6.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733333

RESUMO

Despite clear advances in characterizing marine biofilms, details on their formation and species succession remain scarce particularly during the early stage of development. We investigated the microbial community composition and succession in coastal marine biofilms on plastic. Samples were collected over 75 days of immersion with strengthened samplings during the early stages of biofilm establishment. Biofilm composition was estimated using Illumina Miseq and microbial community interactions were assessed through microbial association network analysis. In silico analyses showed that primers used in most of previous studies considerably underestimated marine biofilm diversity. Unintentionally ignored so far, we showed that Flavobacteriia might be key actors in the functioning of marine biofilms. Gamma-proteobacteria from the genus Oleibacter strongly dominated microbial communities during the first hours of biofilm formation. These pioneer communities were quickly replaced by alpha-proteobacteria and Flavobacteriia. Bacterial communities exhibited fast temporal structure dynamics with taxa displaying rapid increases and declines. A total of 90% of operational taxonomic units (OTUs) were intermittent or ephemeral reinforcing the conclusion that marine biofilms are highly dynamics. With 2/3 of positive significant connections between bacterial OTUs, microbial biofilm communities appear to be more inclined to develop inter-specific cooperation rather than competition and might thus form sets of functional guilds with mutual metabolic exchanges.


Assuntos
Baías/microbiologia , Biofilmes/crescimento & desenvolvimento , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Consórcios Microbianos/genética , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Flavobacteriaceae/isolamento & purificação , França , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Plásticos , Cloreto de Polivinila , RNA Ribossômico 16S/genética , Microbiologia da Água
7.
Chemosphere ; 195: 683-692, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29289013

RESUMO

Nutrient loadings from either point or non-point sources to the environment are related to the growing global population. Subsequent negative impacts of nutrient loading to aquatic environments requires a better understanding of the biogeochemical cycling and better tools to track their sources. This study examines the carbon (C), nitrogen (N) and phosphorus (P) discharge and cycling in a Mediterranean coastal area from rivers to marine sediments and assesses the anthropogenic contributions. Carbon and N concentrations and isotope compositions in rivers particles, surface sediments, and sediment cores were investigated to build up a quantitative multiple-end-member mixing model for C and N isotopes. This model predicts the contribution of four natural and one anthropogenic sources to the sediments and highlighted the anthropogenic fraction of P based on the relationship with anthropogenic δ15N. Although P is a monoisotopic element and total P concentration has been the sole index to study P loading, this study suggests an alternative approach to differentiate anthropogenic and non-anthropogenic (diagenetic) P, revealed point and non-point sources of P, and the corresponding P loading. Also, the diagenetic P background has been calculated for the 50-cm sediment layer of the whole Bay.


Assuntos
Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Isótopos de Nitrogênio/análise , Fósforo/análise , Baías/química , França , Sedimentos Geológicos/química , Modelos Teóricos , Fósforo/química , Rios/química
8.
Environ Sci Technol ; 49(19): 11438-48, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26348385

RESUMO

Heavily contaminated sediments are a serious concern for ecosystem quality, especially in coastal areas, where vulnerability is high due to intense anthropogenic pressure. Surface sediments (54 stations), 50 cm interface cores (five specific stations), river particles, coal and bulk Pb plate from past French Navy activities, seawater and mussels were collected in Toulon Bay (NW Mediterranean Sea). Lead content and Pb stable isotope composition have evidenced the direct impact of sediment pollution stock on both the water column quality and the living organisms, through the specific Pb isotopic signature in these considered compartments. The history of pollution events including past and present contaminant dispersion in Toulon Bay were also demonstrated by historical records of Pb content and Pb isotope ratios in sediment profiles. The sediment resuspension events, as simulated by batch experiments, could be a major factor contributing to the high Pb mobility in the considered ecosystem. A survey of Pb concentrations in surface seawater at 40 stations has revealed poor seawater quality, affecting both the dissolved fraction and suspended particles and points to marina/harbors as additional diffuse sources of dissolved Pb.


Assuntos
Bivalves , Sedimentos Geológicos/química , Chumbo/análise , Animais , Aquicultura , Bivalves/efeitos dos fármacos , Bivalves/metabolismo , Carvão Mineral/análise , Ecossistema , Meio Ambiente , Monitoramento Ambiental/métodos , França , Isótopos/análise , Chumbo/metabolismo , Mar Mediterrâneo , Rios , Água do Mar/análise , Água do Mar/química
9.
Mar Pollut Bull ; 92(1-2): 113-124, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25596891

RESUMO

The combination of analysis, multivariate treatment (PCA) and chemical speciation calculation confirmed the control of Fe, Mn, sulphide and organic matter on metals dynamics in coastal sediments (0-5 cm surface sediments and sediments cores) of Toulon Bay (NW Mediterranean). The temporal monitoring of the physic-chemical parameters as well as the dissolved/particulate minor (Fe/Mn) and trace elements (i.e. Ag, Cd, Co, Cu, Ni, Pb, Zn, …) concentrations in porewaters and sediments were assessed. Multivariate treatment revealed different behaviours for marine elements, terrestrial ones and contaminants. Seasonal variations of metals mobilization in porewater were observed, related to diagenesis activity. Element mobility was studied by selective extractions (ascorbate, acid and alkaline) on sediments. Thermodynamic simulation (PHREEQC) was performed to calculate the elemental dissolved speciation, the mineral saturation index and then to simulate the solid/liquid interaction through precipitation processes, studying the contrasted influence of dissolved organic matter and sulphide.


Assuntos
Sedimentos Geológicos/química , Hidróxidos/química , Metais/química , Sulfetos/química , Poluentes Químicos da Água/análise , Hidróxidos/análise , Ferro/análise , Ferro/química , Manganês/análise , Metais/análise , Modelos Teóricos , Estações do Ano , Sulfetos/análise , Poluentes Químicos da Água/química
10.
Sci Total Environ ; 473-474: 422-36, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24388820

RESUMO

A detailed study on arsenic (As) in rocks and water from the Var River watershed was undertaken aiming at identifying (i) the origin and the distribution of As in this typical Alpine/Mediterranean basin, and (ii) As input into the Mediterranean Sea. Dissolved As concentrations in the Var River range from 0.1 to 4.5 µg⋅L(-1), due to high hydrological variability and the draining through different geological formations. In the upper part of the Var drainage basin, in the Tinée and the Vésubie valleys, high levels of dissolved As concentrations occur (up to 263 µg⋅L(-1)). The two main sources of As in rocks are the Hercynian metamorphic rocks and the Permian argilites. Highly heterogeneous distribution of As in waters draining through metamorphic rocks is probably related to ore deposits containing arsenopyrite. As, U, W and Mo concentrations in water and rocks correspond to the formation of As-rich ore deposits around Argentera granite by hydrothermal fluids deposited at the end of the Hercynian chain formation, which occurred about 300 My ago. In 2009, weekly monitoring was performed on the Var River (15 km upstream of the mouth), highlighting an average dissolved As concentration (<0.45 µm) of 2.7 ± 0.9 µg⋅L(-1), which is significantly higher than the world-average baseline for river water (0.83 µg⋅L(-1)). Taking the average annual discharge (49.4 m(3)⋅s(-1)) into account and the As levels in the dissolved phase and in deposits of the Var River, dissolved As input into the Mediterranean Sea would be 4. 2± 1.4 tons⋅year(-1) which represents 59% of the total As flux. This study also reveals a probable non-conservative As behaviour, i.e., possible transfer between aqueous and solid phases, during the mixing of the Var River with a tributary.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , França , Sedimentos Geológicos/química
11.
Mar Environ Res ; 80: 12-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22776614

RESUMO

Bidimensional and monodimensional polyacrylamide gel electrophoresis were used to study protein expression from zooplankton collected in thirteen stations of Toulon Bay (NW Mediterranean). In this ecosystem, Little Bay showed higher trace metal concentrations (13.5-23.8 nM for Cu, 0.73-1.24 nM for Pb, 27.8-58.7 nM for Zn) than Large Bay (Cu 2.2-15.6 nM; Pb 0.19-0.78 nM; Zn 9.0-38.8 nM). Trace metals positively correlated (p < 0.05) with expression of four zooplankton proteins (MW in kDa/pI: 25.0/5.6; 48.8/4.1; 38.2/4.4; 38.3/5.8) and with biomass of Oithona nana, predominant copepod in Little Bay. Sequencing by LC-MS/MS putatively provided zooplankton identity of these proteins: they were cytoskeleton actin, except one protein that was the chaperone calreticulin. We suggest that actin and calreticulin could be regarded as zooplankton markers of metal stress and be involved in a possible tolerance of O. nana to contamination, contributing to its development in a marine perturbed ecosystem.


Assuntos
Ecossistema , Regulação da Expressão Gênica/efeitos dos fármacos , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Zooplâncton/metabolismo , Animais , Biomassa , Copépodes/efeitos dos fármacos , Monitoramento Ambiental , Perfilação da Expressão Gênica , Metais/análise , Água do Mar/análise , Espectrometria de Massas em Tandem , Oligoelementos/análise , Oligoelementos/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...