Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9749, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546786

RESUMO

Globalization facilitated the spread of invasive alien species (IAS), undermining the stability of the world's ecosystems. We investigated the metabolomic profiles of three IAS species: Chromolaena odorata (Asteraceae) Datura stramonium (Solanaceae), and Xanthium strumarium (Asteraceae), comparing metabolites of individual plants in their native habitats (USA), to their invasive counterparts growing in and around Kruger National Park (South Africa, ZA). Metabolomic samples were collected using RApid Metabolome Extraction and Storage (RAMES) technology, which immobilizes phytochemicals on glass fiber disks, reducing compound degradation, allowing long-term, storage and simplifying biochemical analysis. Metabolomic differences were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of samples eluted from RAMES disks. Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolomes of individual plants allowed statistical separation of species, native and invasive populations of each species, and some populations on the same continent. Invasive populations of all species were more phytochemically diverse than their native counterparts, and their metabolomic profiles were statistically distinguishable from their native relatives. These data may elucidate the mechanisms of successful invasion and rapid adaptive evolution of IAS. Moreover, RAMES technology combined with PLS-DA statistical analysis may allow taxonomic identification of species and, possibly, populations within each species.


Assuntos
Chromolaena/metabolismo , Datura stramonium/metabolismo , Espécies Introduzidas/tendências , Xanthium/metabolismo , Cromatografia Líquida/métodos , Chromolaena/genética , Datura stramonium/genética , Análise Discriminante , Ecossistema , Metaboloma/genética , Metabolômica/métodos , África do Sul , Especificidade da Espécie , Espectrometria de Massas em Tandem/métodos , Xanthium/genética
2.
PLoS One ; 13(9): e0203569, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188945

RESUMO

Study of plant metabolome is a growing field of science that catalogs vast biochemical and functional diversity of phytochemicals. However, collecting and storing samples of plant metabolome, sharing these samples across the scientific community and making them compatible with bioactivity assays presents significant challenges to the advancement of metabolome research. We have developed a RApid Metabolome Extraction and Storage (RAMES) technology that allows efficient, highly compact, field-deployable collection and storage of libraries of plant metabolome. RAMES technology combines rapid extraction with immobilization of extracts on glass microfiber filter discs. Two grams of plant tissue extracted in ethanol, using a specially adapted Dremel® rotary tool, produces 25-35 replicas of 10 mm glass fiber discs impregnated with phytochemicals. These discs can be either eluted with solvents (such as 70% ethanol) to study the metabolomic profiles or used directly in a variety of functional assays. We have developed simple, non-sterile, anti-fungal, anti-bacterial, and anti-oxidant assays formatted for 24-multiwell plates directly compatible with RAMES discs placed inside the wells. Using these methods we confirmed activity in 30 out of 32 randomly selected anti-microbial medicinal plants and spices. Seven species scored the highest activity (total kill) in the anti-bacterial (bacteria from human saliva) and two anti-fungal screens (Fusarium spp. and Saccharomyces cerevisiae), providing functional validation of RAMES technology. RAMES libraries showed limited degradation of compounds after 12 months of storage at -20°C, while others remained stable. Fifty-eight percent of structures characterized in the extracts loaded onto RAMES discs could be eluted from the discs without significant losses. Miniaturized RAMES technology, as described and validated in this manuscript offers a labor, cost, and time-effective alternative to conventional collection of phytochemicals. RAMES technology enables creation of comprehensive metabolomic libraries from various ecosystems and geographical regions in a format compatible with further biochemical and functional studies.


Assuntos
Metaboloma/fisiologia , Compostos Fitoquímicos/metabolismo , Plantas Medicinais/metabolismo , Metabolômica/métodos
3.
Am Sci J ; 16(1): 55-59, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-38617902

RESUMO

Polyphenols content and antioxidant activity in Artemisia sieversiana Willd. were investigated in relation to the altitude of the plant growth in the Western Pamir region. Antioxidant activity generally correlated with the polyphenols content. However, no significant association was found between an altitude of the sample collection and polyphenols content or antioxidant activity.

4.
Virusdisease ; 26(3): 123-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26396978

RESUMO

Respiratory viruses are a major public health problem because of their prevalence and high morbidity rate leading to considerable social and economic implications. Cranberry has therapeutic potential attributed to a comprehensive list of phytochemicals including anthocyanins, flavonols, and unique A-type proanthocyanidins. Soy flavonoids, including isoflavones, have demonstrated anti-viral effects in vitro and in vivo. Recently, it was demonstrated that edible proteins can efficiently sorb and concentrate cranberry polyphenols, including anthocyanins and proanthocyanins, providing greatly stabilized matrices suitable for food products. The combination of cranberry and soy phytoactives may be an effective dietary anti-viral resource. Anti-viral properties of both cranberry juice-enriched and cranberry pomace polyphenol-enriched soy protein isolate (CB-SPI and CBP-SPI) were tested against influenza viruses (H7N1, H5N3, H3N2), Newcastle disease virus and Sendai virus in vitro and in ovo. In our experiments, preincubation with CB-SPI or CBP-SPI resulted in inhibition of virus adsorption to chicken red blood cells and reduction in virus nucleic acid content up to 16-fold, however, CB-SPI and CBP-SPI did not affect hemagglutination. Additionally, CB-SPI and CBP-SPI inhibited viral replication and infectivity more effectively than the commercially available anti-viral drug Amizon. Results suggest CB-SPI and CBP-SPI may have preventative and therapeutic potential against viral infections that cause diseases of the respiratory and gastro-intestinal tract.

5.
Ambio ; 44(6): 473-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25663528

RESUMO

Increasing anthropogenic pressure on the largest remaining tracts of old-growth boreal forest in Europe necessitates additional conservation of ecosystems and biodiversity in northeastern European Russia. In a regional network comprising 8 % of the Nenets Autonomous District and 13.5 % of the Komi Republic, 248 areas have varying protected statuses as state nature reserves (zapovedniks), national parks, reserves/sanctuaries (zakazniks), or natural monuments. Due to increased natural resource extraction in this relatively pristine area, designation of additional protected areas is critical for the protection of key ecological sites. The history of ecological preservation in these regions is herein described, and recent recommendations for incorporating additional ecologically representative areas into the regional network are presented. If the protected area network can be expanded, the overall environmental stability in these globally significant ecosystems may remain intact, and can help Russia meet the 2020 Aichi conservation targets, as set forth by the Convention of Biological Diversity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Ecologia , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...