Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 315: 120427, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243189

RESUMO

Hunting has multiple consequences for wildlife, and it can be an important source of environmental pollution. Most big game hunters use lead (Pb) ammunition that shed metal fragments in the tissues of harvested animals. These Pb fragments become available to scavengers when hunters discard contaminated slaughter remains in the environment. This exposure route has been extensively studied in avian scavengers, but few studies have investigated Pb exposure from ammunition in mammals. Mammalian scavengers, including American black bears (Ursus americanus), frequently use slaughter remains discarded by hunters. The objective of this study was to investigate whether big game harvest density influenced long-term Pb exposure in American black bears from Quebec, Canada. Our results showed that female black bears had higher tooth Pb concentrations in areas with higher big game harvest densities, but such relationship was not evident in males. We also showed that older bears had higher tooth Pb concentrations compared to younger ones. Overall, our study showed that Pb exposure increases with age in black bears and that some of that Pb likely comes from bullet fragments embedded in slaughter remains discarded by hunters. These results suggest that hunters may drive mammalian scavengers into an evolutionary trap, whereby the long-term benefits of consuming slaughter remains could be negated due to increased Pb exposure.


Assuntos
Ursidae , Animais , Masculino , Feminino , Chumbo , Animais Selvagens , Aves , Canadá
2.
Ecol Evol ; 10(13): 6664-6676, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724540

RESUMO

Accurate estimates of animal diet composition are essential to untangle complex interactions in food webs. Biomarkers and molecular tools are increasingly used to estimate diet, sometimes alongside traditional dietary tracing methods. Yet only a few empirical studies have compared the outcomes and potential gains of using a combination of these methods, especially using free-ranging animals with distinct foraging preferences.We used stable isotopes, morphological, and molecular analyses to investigate the diet of free-ranging consumers with two distinct diet types, that is, carnivore and omnivore. By combining the three analytical methods to assess the diet of consumers during the same period, we aimed to identify the limits of each method and to assess the potential benefits of their combined use to derive diet estimates.Our results showed that the different methods led to a consistent diet description for carnivores, which have a relatively simple diet mixture, but their outcomes somewhat differed for omnivore, which have a more complex diet. Still, the combined use of morphological and molecular analyses enhanced the diversity of food sources detected compared to the use of a single method independently of diet types. Precision of diet estimates derived from stable isotope analyses was improved by the addition of priors obtained from morphological and molecular diet analyses of the same population.Although we used free-ranging animals without a known diet, our empirical testing of three of the most widely used methods of diet determination highlights the limits of relying over a single approach, especially in systems with few or no a priori information about the foraging habits of consumers. The choice of an appropriate approach of diet description should be a key step when planning dietary studies of free-ranging populations. We recommend using more than one dietary determination methods especially for species with complex diet mixtures.

3.
Ecol Evol ; 8(24): 12629-12640, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619569

RESUMO

Habitat selection has received considerable attention from ecologists during the last decades, yet the underlying forces shaping individual differences in habitat selection are poorly documented. Some of these differences could be explained by the early experience of individuals in their natal habitat. By selecting habitat attributes like those encountered early in life, individuals could improve resource acquisition, survival, and ultimately fitness. This behavior, known as natal habitat preference induction (NHPI), could be particularly common in large mammals, because offspring generally stay with their mother for an extended period. We used three complementary approaches to assess NHPI in a marked population of woodland caribou (Rangifer tarandus caribou): (a) population-based resource selection functions (RSFs), (b) individual-based RSFs, and (c) behavioral repeatability analyses. All approaches compared the behavior of calves in their natal range to their behavior as independent subadults during the snow-covered (Dec-Apr) and snow-free (May-Nov) seasons. Using RSFs, we found that the magnitude of habitat selection between calf and subadult stages differed for most covariates, yet the signs of statistically significant effects (selection vs. avoidance) were generally the same. We also found that some habitat selection tactics were highly repeatable across life stages. Notably, caribou responses to habitat disturbances were highly repeatable year-round, meaning that different individuals reacted differently, but consistently, to disturbances. This study highlights the potential role of natal habitat preference induction in shaping individual differences in habitat selection in large mammals and provides valuable knowledge for the management and conservation of a threatened species.

4.
Ecology ; 96(10): 2622-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649384

RESUMO

Ecological theory predicts that the intensity of antipredator responses is dependent upon the spatiotemporal context of predation risk (the risk allocation hypothesis). However, most studies to date have been conducted over small spatial extents, and did not fully take into account gradual responses to predator proximity. We simultaneously collected spatially explicit data on predator and prey to investigate acute responses of a threatened forest ungulate, the boreal caribou (Rangifer tarandus), to the spatiotemporal dynamics of wolf (Canis lupus) distribution during spring. Movement analysis of GPS-collared individuals from both species revealed high plasticity in habitat-selection decisions of caribou. Female caribou avoided open areas and deciduous forests and moved relatively fast and toward foraging areas when wolves were closer than 2.5 km. Caribou also avoided food-rich areas only when wolves were within 1 km. Our results bridge the gap between long-term perceived risk and immediate flight responses by revealing dynamic antipredator tactics in response to predator proximity.


Assuntos
Medo , Modelos Biológicos , Comportamento Predatório , Rena/fisiologia , Lobos/fisiologia , Distribuição Animal , Animais , Demografia , Ecossistema , Feminino , Análise Espaço-Temporal , Fatores de Tempo
5.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25122223

RESUMO

Landscape heterogeneity plays a central role in shaping ecological and evolutionary processes. While species utilization of the landscape is usually viewed as constant within a year, the spatial distribution of individuals is likely to vary in time in relation to particular seasonal needs. Understanding temporal variation in landscape use and genetic connectivity has direct conservation implications. Here, we modelled the daily use of the landscape by caribou in Quebec and Labrador, Canada and tested its ability to explain the genetic relatedness among individuals. We assessed habitat selection using locations of collared individuals in migratory herds and static occurrences from sedentary groups. Connectivity models based on habitat use outperformed a baseline isolation-by-distance model in explaining genetic relatedness, suggesting that variations in landscape features such as snow, vegetation productivity and land use modulate connectivity among populations. Connectivity surfaces derived from habitat use were the best predictors of genetic relatedness. The relationship between connectivity surface and genetic relatedness varied in time and peaked during the rutting period. Landscape permeability in the period of mate searching is especially important to allow gene flow among populations. Our study highlights the importance of considering temporal variations in habitat selection for optimizing connectivity across heterogeneous landscape and counter habitat fragmentation.


Assuntos
Ecossistema , Genética Populacional , Rena/genética , Migração Animal , Animais , Fluxo Gênico , Terra Nova e Labrador , Quebeque , Estações do Ano , Comportamento Sexual Animal
6.
Oecologia ; 176(1): 297-306, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25034087

RESUMO

Behavioural strategies may have important fitness, ecological and evolutionary consequences. In woodland caribou, human disturbances are associated with higher predation risk. Between 2004 and 2011, we investigated if habitat selection strategies of female caribou towards disturbances influenced their calf's survival in managed boreal forest with varying intensities of human disturbances. Calf survival was 53% and 43% after 30 and 90 days following birth, respectively, and 52% of calves that died were killed by black bear. The probability that a female lose its calf to predation was not influenced by habitat composition of her annual home range, but decreased with an increase in proportion of open lichen woodland within her calving home range. At the local scale, females that did not lose their calf displayed stronger avoidance of high road density areas than females that lost their calf to predation. Further, females that lost their calf to predation and that had a low proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas where these young cutovers were locally absent. Also, females that lost their calf to predation and that had a high proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas with a high local density of ≤5-year-old cutovers. Our study demonstrates that we have to account for human-induced disturbances at both local and regional scales in order to further enhance effective caribou management plans. We demonstrate that disturbances not only impact spatial distribution of individuals, but also their reproductive success.


Assuntos
Comportamento Animal/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Rena/fisiologia , Árvores , Animais , Feminino , Sistemas de Informação Geográfica , Comportamento de Retorno ao Território Vital/fisiologia , Humanos , Dinâmica Populacional , Comportamento Predatório/fisiologia , Modelos de Riscos Proporcionais , Quebeque , Ursidae/fisiologia
7.
Mov Ecol ; 2: 19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27148451

RESUMO

BACKGROUND: Migratory species face numerous threats related to human encroachment and climate change. Several migratory populations are declining and individuals are losing their migratory behaviour. To understand how habitat loss or changes in the phenology of natural processes affect migrations, it is crucial to clearly identify the timing and the patterns of migration. We propose an objective method, based on the detection of changes in movement patterns, to identify departure and arrival dates of the migration. We tested the efficiency of our approach using simulated paths before applying it to spring migration of migratory caribou from the Rivière-George and Rivière-aux-Feuilles herds in northern Québec and Labrador. We applied the First-Passage Time analysis (FPT) to locations of 402 females collected between 1986 and 2012 to characterize their movements throughout the year. We then applied a signal segmentation process in order to segment the path of FPT values into homogeneous bouts to discriminate migration from seasonal range use. This segmentation process was used to detect the winter break and the calving ground use because spring migration is defined by the departure from the winter range and the arrival on the calving ground. RESULTS: Segmentation of the simulated paths was successful in 96% of the cases, and had a high precision (96.4% of the locations assigned to the appropriate segment). Among the 813 winter breaks and 669 calving ground use expected to be detected on the FPT profiles, and assuming that individuals always reduced movements for each of the two periods, we detected 100% of the expected winter breaks and 89% of the expected calving ground use, and identified 648 complete spring migrations. Failures to segment winter breaks or calving ground use were related to individuals only slowing down or performing less pronounced pauses resulting in low mean FPT. CONCLUSION: We show that our approach, which relies only on the analysis of movement patterns, provides a suitable and easy-to-use tool to study species exhibiting variations in their migration patterns and seasonal range use.

8.
PLoS One ; 8(9): e73695, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040029

RESUMO

Anthropogenic disturbances have been demonstrated to affect animal behavior, distribution, and abundance, but assessment of their impacts on fitness-related traits has received little attention. We hypothesized that human activities and infrastructure cause a decrease in the individual performance of preys because of anthropogenically enhanced predation risk. We evaluated the impacts of commercial logging and road networks on the fitness of a large herbivore known to be sensitive to human disturbance: the forest-dwelling woodland caribou (Rangifer tarandus caribou). For 8 consecutive years (2004-2011) we monitored 59 individuals using GPS telemetry in the Charlevoix region of Québec, Canada. We also used Very High Frequency telemetry locations collected on 28 individuals from 1999-2000. We related habitat selection of adult caribou at various spatio-temporal scales to their probability of dying from predation, and to indices of their reproductive success and energy expenditure. The probability that adult caribou died from predation increased with the proportion of recent disturbances (including cutblocks ≤ 5 years old) in their annual home range. The respective effects of increasing paved and forestry road densities depended upon the overall road density within the home range of caribou. At a finer scale of 10 to 15 days before their death, caribou that were killed by a predator selected for recent disturbances more than individuals that survived, and avoided old mature conifer stands. The home range area of caribou increased with road density. Finally, the composition of the home range of females had no effect on their reproductive success. We show that human activities and infrastructure may influence the individual performance of large prey species in highly managed regions. We outline the need to consider the full set of impacts that human development may have on threatened animal populations, with particular emphasis on predator-prey relationships and population dynamics.


Assuntos
Ecossistema , Atividades Humanas , Comportamento Predatório/fisiologia , Rena/fisiologia , Fatores Etários , Animais , Conservação dos Recursos Naturais/métodos , Feminino , Agricultura Florestal/métodos , Comportamento de Retorno ao Território Vital/fisiologia , Modelos Logísticos , Masculino , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional , Quebeque , Fatores de Risco , Telemetria/métodos
9.
J Anim Ecol ; 82(5): 1062-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23701257

RESUMO

1. Habitat selection strategies translate into movement tactics, which reckon with the predator-prey spatial game. Strategic habitat selection analysis can therefore illuminate behavioural games. Cover types at potential encounter sites (i.e. intersections between movement paths of predator and prey) can be compared with cover types available (i) within the area of home-range-overlap (HRO) between predator and prey; and (ii) along the path (MP) of each species. Unlike the HRO scale, cover-type availability at MP scale differs between interacting species due to species-specific movement decisions. Scale differences in selection could therefore inform on divergences in fitness rewarding actions between predators and prey. 2. We used this framework to evaluate the spatial game between GPS-collared wolves (Canis lupus) versus caribou (Rangifer tarandus), and wolf versus moose (Alces alces). 3. Changes in cover-type availability between HRO and MP revealed differences in how each species fine-tuned its movements to habitat features. In contrast to caribou, wolves increased their encounter rate with regenerating cuts along their paths (MP) relative to the HRO level. As a consequence, wolves were less likely to cross caribou paths in areas with higher percentage of regenerating cuts than expected based on the availability along their paths, whereas caribou had a higher risk of intersecting wolf paths by crossing these areas, relative to random expectation along their paths. Unlike for caribou, availability of mixed and deciduous areas decreased from HRO to MP level for wolves and moose. Overall, wolves displayed stronger similarities in movement decisions with moose than with caribou, thereby revealing the focus of wolves on moose. 4. Our study reveals how differences in fine-scale movement tactics between species create asymmetric relative encounter probabilities between predators and prey, given their paths. Increase in relative risk of encounter for prey and decrease for predators associated with specific cover types emerging from HRO to MP scale analysis can disclose potential weaknesses in current movement tactics involved the predator-prey game, such as caribou use of cutovers in summer-autumn. In turn, these weaknesses can inform on subsequent changes in habitat selection tactics that might arise due to evolutionary forces.


Assuntos
Comportamento Animal , Cervos/fisiologia , Comportamento Predatório , Lobos/psicologia , Animais , Canadá , Ecossistema , Locomoção , Rena/fisiologia , Estações do Ano , Árvores
10.
PLoS One ; 7(11): e49719, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166754

RESUMO

Heterogeneity in foraging behaviour can profoundly influence ecological processes shaping populations. To scale-up from individual foraging behaviour to processes occurring at the population scale, one needs to sample foraging behaviour at the individual level, and over large temporal scales or during critical seasons known to influence life-history traits. We developed an innovative technique to monitor foraging behaviour at the individual level in secretive species, a technique that can be ultimately used to investigate the links between foraging behaviour and life-history traits. First, the technique used a novel approach, namely the combination of telemetry tracking and biomarking of faeces with food dyes to locate fresh signs of presence left by individuals equipped with GPS collars. Second, the technique is based on the simultaneous or successive sampling of life-history traits and individual foraging behaviour, using tracks with high probabilities of recovery of dyed faeces. We first describe our methodological approach, using a case study of a large herbivore, and then provide recommendations and guidelines for its use. Sampling single snow tracks of individuals equipped with a GPS collar was a reliable way to assess individual winter foraging behaviour in a white-tailed deer (Odocoileus virginianus Zimmermann) population. During that period, the probability of recovery of dyed faeces within the range of the collar precision was very high for single snow tracks of equipped deer (97%). Our approach is well suited to study individual foraging behaviour, and could ultimately be used to investigate the interplay between intra-population heterogeneity in foraging behaviour, life-history traits, and demographic processes.


Assuntos
Comportamento Apetitivo , Cervos , Fezes/química , Sistemas de Informação Geográfica , Comunicações Via Satélite , Telemetria , Animais , Ecossistema , Comportamento Alimentar , Feminino , Masculino , Dinâmica Populacional , Estações do Ano
11.
Proc Biol Sci ; 279(1746): 4481-8, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22951736

RESUMO

The impact of anthropogenic disturbance on the fitness of prey should depend on the relative effect of human activities on different trophic levels. This verification remains rare, however, especially for large animals. We investigated the functional link between habitat selection of female caribou (Rangifer tarandus) and the survival of their calves, a fitness correlate. This top-down controlled population of the threatened forest-dwelling caribou inhabits a managed forest occupied by wolves (Canis lupus) and black bears (Ursus americanus). Sixty-one per cent of calves died from bear predation within two months following their birth. Variation in habitat selection tactics among mothers resulted in different mortality risks for their calves. When calves occupied areas with few deciduous trees, they were more likely to die from predation if the local road density was high. Although caribou are typically associated with pristine forests, females selected recent cutovers without negative impact on calf survival. This selection became detrimental, however, as regeneration took place in harvested stands owing to increased bear predation. We demonstrate that human disturbance has asymmetrical consequences on the trophic levels of a food web involving multiple large mammals, which resulted in habitat selection tactics with a greater short-term fitness payoff and, therefore, with higher evolutionary opportunity.


Assuntos
Distribuição Animal , Cervos/fisiologia , Meio Ambiente , Aptidão Genética , Animais , Cervos/crescimento & desenvolvimento , Feminino , Cadeia Alimentar , Sistemas de Informação Geográfica , Atividades Humanas , Humanos , Dinâmica Populacional , Quebeque , Tecnologia de Sensoriamento Remoto , Estações do Ano
12.
Oecologia ; 170(4): 965-77, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22729651

RESUMO

A species may modify its relative habitat use with changing availability, generating functional responses in habitat selection. Functional responses in habitat selection are expected to occur when animals experience trade-offs influencing their habitat selection, but only a few studies to date have explicitly linked functional responses to the underlying trade-offs faced by the animals. We used data from 39 female moose fitted with GPS telemetry collars in two nearby study areas in Canada to investigate if moose (1) were faced with a food/cover trade-off in habitat selection, as typically acknowledged in the literature, and (2) showed a functional response in their use of food/cover-rich habitats. We also examined how habitat selection patterns varied seasonally, and between study areas. The occurrence of functional responses varied strongly between study areas, and could not always be related to a measurable food/cover trade-off. Functional responses were observed more often in the study area where the environmental conditions were more severe (colder temperatures, higher precipitations, and lower food availability). Selection coefficients were also less variable among individuals in that study area, suggesting that severe environmental conditions may constrain individuals to a few selection tactics and promote the development of functional responses. Moose reacted to the availability of different habitat types in different seasons, reflecting the changing trade-offs faced by the animals. We found considerable behavioral differences between individuals from two adjacent study areas, and therefore recommend caution when extrapolating habitat selection results. We advocate for the wider use of functional responses to identify critical habitats for a species from a management or conservation perspective.


Assuntos
Distribuição Animal , Cervos , Ecossistema , Comportamento Alimentar , Animais , Canadá , Conservação dos Recursos Naturais , Feminino , Estações do Ano
13.
J Anim Ecol ; 79(6): 1157-63, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20678139

RESUMO

1. Several methods have been developed to assess habitat selection, most of which are based on a comparison between habitat attributes in used vs. unused or random locations, such as the popular resource selection functions (RSFs). Spatial evaluation of residency time has been recently proposed as a promising avenue for studying habitat selection. Residency-time analyses assume a positive relationship between residency time within habitat patches and selection. We demonstrate that RSF and residency-time analyses provide different information about the process of habitat selection. Further, we show how the consideration of switching rate between habitat patches (interpatch movements) together with residency-time analysis can reveal habitat-selection strategies. 2. Spatially explicit, individual-based modelling was used to simulate foragers displaying one of six foraging strategies in a heterogeneous environment. The strategies combined one of three patch-departure rules (fixed-quitting-harvest-rate, fixed-time and fixed-amount strategy), together with one of two interpatch-movement rules (random or biased). Habitat selection of simulated foragers was then assessed using RSF, residency-time and interpatch-movement analyses. 3. Our simulations showed that RSFs and residency times are not always equivalent. When foragers move in a non-random manner and do not increase residency time in richer patches, residency-time analysis can provide misleading assessments of habitat selection. This is because the overall time spent in the various patch types not only depends on residency times, but also on interpatch-movement decisions. 4. We suggest that RSFs provide the outcome of the entire selection process, whereas residency-time and interpatch-movement analyses can be used in combination to reveal the mechanisms behind the selection process. 5. We showed that there is a risk in using residency-time analysis alone to infer habitat selection. Residency-time analyses, however, may enlighten the mechanisms of habitat selection by revealing central components of resource-use strategies. Given that management decisions are often based on resource-selection analyses, the evaluation of resource-use strategies can be key information for the development of efficient habitat-management strategies. Combining RSF, residency-time and interpatch-movement analyses is a simple and efficient way to gain a more comprehensive understanding of habitat selection.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Modelos Biológicos , Animais , Atividade Motora , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...