Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11050, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422488

RESUMO

We report on direct femtosecond laser writing in zinc barium gallo-germanate glasses. A combination of spectroscopic techniques allows to progress in the understanding of the mechanisms taking place depending on the energy. In the first regime (type I, isotropic local index change) up to 0.5 µJ, the main occurrence is the generation of charge traps inspected by luminescence, together with separation of charges detected by polarized second harmonic generation measurements. At higher pulse energies notably at the threshold corresponding to 0.8 µJ or in the second regime (type II modifications corresponding to nanograting formation energy domain), the main occurrence is a chemical change and re-organization of the network evidenced by the appearance of molecular O2 seen in the Raman spectra. In addition, the polarization dependence of the second harmonic generation in type II indicates that the organization of nanogratings may be perturbed by the laser-imprinted electric field.


Assuntos
Vidro , Lasers , Vidro/química , Luz , Luminescência , Redação
2.
Mater Sci Eng C Mater Biol Appl ; 118: 111334, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254966

RESUMO

Additive manufacturing is a rising field in bone tissue engineering. Additive fabrication offers reproducibility, high precision and rapid manufacture of custom patient-specific scaffolds. The development of appropriate composite materials for biomedical applications is critical to reach clinical application of these novel biomaterials. In this work, medical grade poly(lactic-co-glycolic) acid (PLGA) was mixed with hydroxyapatite nanoparticles (nHA) to fabricate 3D porous scaffolds by Fused Deposition Modeling. We have first confirmed that the composite material could be printed in a reproductive manner. Physical characterization demonstrated a low degradation of the material during manufacturing steps and an expected loading and homogeneous distribution of nHA. In vitro biodegradation of the scaffolds showed modifications of morphological and physicochemical properties over time. The composite scaffolds were biocompatible and high cell viability was observed in vitro, as well as a maintain of cell proliferation. As expected, the addition of nHA displayed a positive impact on osteodifferentiation in vitro. Furthermore, a limited inflammatory reaction was observed after subcutaneous implantation of the materials in the rat. Overall, this study suggests that this composite material is suitable for bone tissue engineering applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Osso e Ossos , Durapatita , Humanos , Impressão Tridimensional , Ratos , Reprodutibilidade dos Testes
3.
Sci Rep ; 8(1): 7388, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743577

RESUMO

The potential for realizing robust, monolithic, near-surface refractive micro-optic elements with long-lived stability is demonstrated in visible and infrared transmitting glasses capable of use in dual band applications. Employing an enhanced understanding of glass chemistry and geometric control of mobile ion migration made possible with electrode patterning, flat, permanent, thermally-poled micro-optic structures have been produced and characterized. Sub-surface (t~5-10 µm) compositional and structural modification during the poling process results in formation of spatially-varying refractive index profiles, exhibiting induced Δn changes up to 5 × 10-2 which remain stable for >15 months. The universality of this approach applied to monolithic vis-near infrared [NIR] oxide and NIR-midwave infrared [MIR] chalcogenide glass materials is demonstrated for the first time. Element size, shape and gradient profile variation possible through pattern design and fabrication is shown to enable a variety of design options not possible using other GRIN process methodologies.

4.
Sci Rep ; 8(1): 6100, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650995

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 8(1): 1337, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358625

RESUMO

Fused silica optics often exhibit surface scratches after polishing that radically reduce their damage resistance at the wavelength of 351 nm in the nanosecond regime. Consequently, chemical treatments after polishing are often used to increase the damage threshold and ensure a safe operation of these optics in large fusion-scale laser facilities. Here, we investigate the reasons for such an improvement. We study the effect of an HF-based wet etching on scratch morphology and propose a simple analytic model to reflect scratch widening during etching. We also use a finite element model to evaluate the effect of the morphological modification induced by etching on the electric field distribution in the vicinity of the scratch. We evidence that this improvement of the scratch damage resistance is due to a reduction of the electric field enhancement. This conclusion is supported by secondary electron microscopy (SEM) imaging of damage sites initiated on scratches after chemical treatment.

6.
Opt Express ; 25(5): 4607-4620, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380732

RESUMO

We investigate the interest of deep wet etching with HF/HNO3 or KOH solutions as a final step after polishing to improve fused silica optics laser damage resistance at the wavelength of 351 nm. This comparison is carried out on scratches engineered on high damage threshold polished fused silica optics. We evidence that both KOH and HF/HNO3 solutions are efficient to passivate scratches and thus improve their damage threshold up to the level of the polished surface. The effect of these wet etchings on surface roughness and aspect is also studied. We show that KOH solution exhibit better overall surface quality that HF/HNO3 solution in the tested conditions. Given the safety difficulties associated with the processing with HF, KOH solution appears as a pertinent alternative to HF deep wet etching.

7.
Chem Commun (Camb) ; 46(15): 2617-9, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449325

RESUMO

The fluorous copper(II)-carboxylate complexes 1 and 2 are readily chemisorbed on SiO(2) surfaces affording super-hydrophilic binding layers for subsequent versatile functionalization by coordination chemistry.

8.
Opt Express ; 13(11): 4064-9, 2005 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-19495317

RESUMO

Second harmonic generation (SHG) has been obtained in a rich in sodium niobium orophosphate glass by a thermal poling treatment. The thermally poled glass SHG signal has been studied through an original analysis of both transmitted and reflected polarized Maker-fringe patterns. Therefore, the second order nonlinear optical (NLO) efficiency was estimated from the simulation of the Maker-fringe patterns with a stepwise decreasing profile from the anode surface. A reproducible chi(2) susceptibility value as high as 5.0 +/-0.3 pm/V was achieved at the anode side. The nonlinear layer, found to be sodium-depleted up to 5 microm deep inside the anode side, identical to the simulated nonlinear zone thickness, indicates a complex space-charge-migration/ nonlinear glass matrix response process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...