Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38734892

RESUMO

Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.


Assuntos
Bactérias , Humanos , Bacteriemia/microbiologia , Fatores de Virulência , Sangue/microbiologia , Viabilidade Microbiana
2.
Microbes Infect ; 26(4): 105334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556158

RESUMO

Global burden of infectious diseases and antimicrobial resistance are major public health issues calling for innovative control measures. Bacterial NAD kinase (NADK) is a crucial enzyme for production of NADP(H) and growth. In Staphylococcus aureus, NADK promotes pathogenesis by supporting production of key virulence determinants. Here, we find that knockdown of NADK by CRISPR interference sensitizes S. aureus to osmotic stress and to stresses induced by antibiotics targeting the envelop as well as replication, transcription and translation. Thus, NADK represents a promising target for the development of inhibitors which could be used in combination with current antibiotics.


Assuntos
Antibacterianos , Fosfotransferases (Aceptor do Grupo Álcool) , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Pressão Osmótica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Estresse Fisiológico
3.
Microbiol Resour Announc ; 12(11): e0083823, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37906029

RESUMO

We report the complete genome sequence of Yersinia pseudotuberculosis strain SP-1303, identified as part of lineage 8 and associated with Far East scarlet-like fever. The genome includes the chromosome, the Yersinia-virulence plasmid (pYV) encoding a type III secretion system essential for virulence, the pVM82 plasmid, and two cryptic plasmids.

4.
Microbiol Resour Announc ; 12(3): e0002423, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840571

RESUMO

Here, we report complete genome sequences of two clinical isolates of Staphylococcus aureus, namely, Xen31 and Xen36, which have been genetically modified to express an optimized Photorhabdus luminescens luciferase operon. Xen31 and Xen36 are bioluminescent strains used widely for investigation of bacterial pathogenesis, drug discovery, and development of novel therapies.

5.
Microbiol Spectr ; : e0382622, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847572

RESUMO

The genus Yersinia includes a large variety of nonpathogenic and life-threatening pathogenic bacteria, which cause a broad spectrum of diseases in humans and animals, such as plague, enteritis, Far East scarlet-like fever (FESLF), and enteric redmouth disease. Like most clinically relevant microorganisms, Yersinia spp. are currently subjected to intense multi-omics investigations whose numbers have increased extensively in recent years, generating massive amounts of data useful for diagnostic and therapeutic developments. The lack of a simple and centralized way to exploit these data led us to design Yersiniomics, a web-based platform allowing straightforward analysis of Yersinia omics data. Yersiniomics contains a curated multi-omics database at its core, gathering 200 genomic, 317 transcriptomic, and 62 proteomic data sets for Yersinia species. It integrates genomic, transcriptomic, and proteomic browsers, a genome viewer, and a heatmap viewer to navigate within genomes and experimental conditions. For streamlined access to structural and functional properties, it directly links each gene to GenBank, the Kyoto Encyclopedia of Genes and Genomes (KEGG), UniProt, InterPro, IntAct, and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and each experiment to Gene Expression Omnibus (GEO), the European Nucleotide Archive (ENA), or the Proteomics Identifications Database (PRIDE). Yersiniomics provides a powerful tool for microbiologists to assist with investigations ranging from specific gene studies to systems biology studies. IMPORTANCE The expanding genus Yersinia is composed of multiple nonpathogenic species and a few pathogenic species, including the deadly etiologic agent of plague, Yersinia pestis. In 2 decades, the number of genomic, transcriptomic, and proteomic studies on Yersinia grew massively, delivering a wealth of data. We developed Yersiniomics, an interactive web-based platform, to centralize and analyze omics data sets on Yersinia species. The platform allows user-friendly navigation between genomic data, expression data, and experimental conditions. Yersiniomics will be a valuable tool to microbiologists.

6.
Eur J Med Chem ; 246: 114941, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455355

RESUMO

Nicotinamide adenine dinucleotide kinases (NAD kinases) are essential and ubiquitous enzymes involved in the production of NADP(H) which is an essential cofactor in many metabolic pathways. Targeting NAD kinase (NADK), a rate limiting enzyme of NADP biosynthesis pathway, represents a new promising approach to treat bacterial infections. Previously, we have produced the first NADK inhibitor active against staphylococcal infection. From this linear di-adenosine derivative, namely NKI1, we designed macrocyclic analogues. Here, we describe the synthesis and evaluation of an original series of cyclic diadenosine derivatives as NADK inhibitors of two pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus. The nature and length of the link between the two adenosine units were examined leading to sub-micromolar inhibitors of NADK1 from L. monocytogenes, including its most potent in vitro inhibitor reported so far (with a 300-fold improvement compared to NKI1).


Assuntos
Adenosina , Fosfotransferases (Aceptor do Grupo Álcool) , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adenosina/farmacologia , Relação Estrutura-Atividade , Bactérias/metabolismo
7.
Microbes Infect ; 24(8): 105057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36195257
8.
Gut Microbes ; 14(1): 2121577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36154446

RESUMO

Epidemiological projections point to acquisition of ever-expanding multidrug resistance (MDR) by Escherichia coli, a commensal of the digestive tract and a source of urinary tract pathogens. Bioinformatics analyses of a large collection of E. coli genomes from EnteroBase, enriched in clinical isolates of worldwide origins, suggest the Cytotoxic Necrotizing Factor 1 (CNF1)-toxin encoding gene, cnf1, is preferentially distributed in four common sequence types (ST) encompassing the pandemic E. coli MDR lineage ST131. This lineage is responsible for a majority of extraintestinal infections that escape first-line antibiotic treatment, with known enhanced capacities to colonize the gastrointestinal tract. Statistical projections based on this dataset point to a global expansion of cnf1-positive multidrug-resistant ST131 strains from subclade H30Rx/C2, accounting for a rising prevalence of cnf1-positive strains in ST131. Despite the absence of phylogeographical signals, cnf1-positive isolates segregated into clusters in the ST131-H30Rx/C2 phylogeny, sharing a similar profile of virulence factors and the same cnf1 allele. The suggested dominant expansion of cnf1-positive strains in ST131-H30Rx/C2 led us to uncover the competitive advantage conferred by cnf1 for gut colonization to the clinical strain EC131GY ST131-H30Rx/C2 versus cnf1-deleted isogenic strain. Complementation experiments showed that colon tissue invasion was compromised in the absence of deamidase activity on Rho GTPases by CNF1. Hence, gut colonization factor function of cnf1 was confirmed for another clinical strain ST131-H30Rx/C2. In addition, functional analysis of the cnf1-positive clinical strain EC131GY ST131-H30Rx/C2 and a cnf1-deleted isogenic strain showed no detectable impact of the CNF1 gene on bacterial fitness and inflammation during the acute phase of bladder monoinfection. Together these data argue for an absence of role of CNF1 in virulence during UTI, while enhancing gut colonization capacities of ST131-H30Rx/C2 and suggested expansion of cnf1-positive MDR isolates in subclade ST131-H30Rx/C2.


Assuntos
Toxinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Humanos , Fatores de Virulência/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas rho de Ligação ao GTP
9.
Elife ; 112022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723663

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADPH) is the primary electron donor for reductive reactions that are essential for the biosynthesis of major cell components in all organisms. Nicotinamide adenine dinucleotide kinase (NADK) is the only enzyme that catalyzes the synthesis of NADP(H) from NAD(H). While the enzymatic properties and physiological functions of NADK have been thoroughly studied, the role of NADK in bacterial pathogenesis remains unknown. Here, we used CRISPR interference to knock down NADK gene expression to address the role of this enzyme in Staphylococcus aureus pathogenic potential. We find that NADK inhibition drastically decreases mortality of zebrafish infected with S. aureus. Furthermore, we show that NADK promotes S. aureus survival in infected macrophages by protecting bacteria from antimicrobial defense mechanisms. Proteome-wide data analysis revealed that production of major virulence-associated factors is sustained by NADK. We demonstrate that NADK is required for expression of the quorum-sensing response regulator AgrA, which controls critical S. aureus virulence determinants. These findings support a key role for NADK in bacteria survival within innate immune cells and the host during infection.


Assuntos
Staphylococcus aureus , Fatores de Virulência , Animais , NAD/metabolismo , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Virulência/genética , Peixe-Zebra/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599102

RESUMO

Listeriolysin S (LLS) is a thiazole/oxazole-modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.


Assuntos
Bacteriocinas/metabolismo , Membrana Celular/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/metabolismo , Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo
11.
mSphere ; : e0021721, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133202

RESUMO

Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes. However, some pathogenic microorganisms, including some drug-resistant bacteria, have evolved sophisticated mechanisms to prevent phagocytosis or escape intracellular degradation. Cold atmospheric plasma (CAP) is an emerging technology with promising bactericidal effects. Here, we investigated the effect of CAP on Staphylococcus aureus phagocytosis by RAW 264.7 macrophage-like cells. We demonstrate that CAP treatment increases intracellular concentrations of reactive oxygen species (ROS) and nitric oxide and promotes the elimination of both antibiotic-sensitive and antibiotic-resistant S. aureus by RAW 264.7 cells. This effect was inhibited by antioxidants indicating that the bactericidal effect of CAP was mediated by oxidative killing of intracellular bacteria. Furthermore, we show that CAP promotes the association of S. aureus to lysosomal-associated membrane protein 1 (LAMP-1)-positive phagosomes, in which bacteria are exposed to low pH and cathepsin D hydrolase. Taken together, our results provide the first evidence that CAP activates defense mechanisms of macrophages, ultimately leading to bacterial elimination. IMPORTANCE Staphylococcus aureus is the most frequent cause of skin and soft tissue infections. Treatment failures are increasingly common due to antibiotic resistance and the emergence of resistant strains. Macrophages participate in the first line of immune defense and are critical for coordinated defense against pathogenic bacteria. However, S. aureus has evolved sophisticated mechanisms to escape macrophage killing. In the quest to identify novel antimicrobial therapeutic approaches, we investigated the activity of cold atmospheric plasma (CAP) on macrophages infected with S. aureus. Here, we show that CAP treatment promotes macrophage ability to eliminate internalized bacteria. Importantly, CAP could trigger killing of both antibiotic-sensitive and antibiotic-resistant strains of S. aureus. While CAP did not affect the internalization capacity of macrophages, it increased oxidative-dependent bactericidal activity and promoted the formation of degradative phagosomes. Our study shows that CAP has beneficial effects on macrophage defense mechanisms and may potentially be useful in adjuvant antimicrobial therapies.

12.
Front Cell Infect Microbiol ; 10: 577559, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102257

RESUMO

Macrophages participate to the first line of defense against infectious agents. Microbial pathogens evolved sophisticated mechanisms to escape macrophage killing. Here, we review recent discoveries and emerging concepts on bacterial molecular strategies to subvert macrophage immune responses. We focus on the expanding number of fascinating subversive tools developed by Listeria monocytogenes, Staphylococcus aureus, and pathogenic Yersinia spp., illustrating diversity and commonality in mechanisms used by microorganisms with different pathogenic lifestyles.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Evasão da Resposta Imune , Macrófagos , Staphylococcus aureus/genética
13.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105870

RESUMO

Nicotinamide adenine dinucleotide (NAD) kinases are essential and ubiquitous enzymes involved in the tight regulation of NAD/nicotinamide adenine dinucleotide phosphate (NADP) levels in many metabolic pathways. Consequently, they represent promising therapeutic targets in cancer and antibacterial treatments. We previously reported diadenosine derivatives as NAD kinase inhibitors with bactericidal activities on Staphylococcus aureus. Among them, one compound (namely NKI1) was found effective in vivo in a mouse infection model. With the aim to gain detailed knowledge about the selectivity and mechanism of action of this lead compound, we planned to develop a chemical probe that could be used in affinity-based chemoproteomic approaches. Here, we describe the first functionalized chemical probe targeting a bacterial NAD kinase. Aminoalkyl functional groups were introduced on NKI1 for further covalent coupling to an activated SepharoseTM matrix. Inhibitory properties of functionalized NKI1 derivatives together with X-ray characterization of their complexes with the NAD kinase led to identify candidate compounds that are amenable to covalent coupling to a matrix.


Assuntos
Adenina/análogos & derivados , Adenosina/síntese química , Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Adenina/síntese química , Adenina/farmacologia , Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Camundongos , Modelos Moleculares , NADP/química , Conformação Proteica , Sefarose/química , Staphylococcus aureus
14.
Cell Microbiol ; 22(4): e13183, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32185895

RESUMO

Decades of breakthroughs resulting from cross feeding of microbiological research and technological innovation have promoted Listeria monocytogenes to the rank of model microorganism to study host-pathogen interactions. The extraordinary capacity of this bacterium to interfere with a vast array of host cellular processes uncovered new concepts in microbiology, cell biology and infection biology. Here, we review technological advances that revealed how bacteria and host interact in space and time at the molecular, cellular, tissue and whole body scales, ultimately revolutionising our understanding of Listeria pathogenesis. With the current bloom of multidisciplinary integrative approaches, Listeria entered a new microbiology era.


Assuntos
Biotecnologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Animais , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Humanos , Listeria monocytogenes/genética , Camundongos , Virulência , Fatores de Virulência
15.
ACS Infect Dis ; 6(3): 422-435, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32017533

RESUMO

Antibiotic resistance is a worldwide threat due to the decreasing supply of new antimicrobials. Novel targets and innovative strategies are urgently needed to generate pathbreaking drug compounds. NAD kinase (NADK) is essential for growth in most bacteria, as it supports critical metabolic pathways. Here, we report the discovery of a new class of antibacterials that targets bacterial NADK. We generated a series of small synthetic adenine derivatives to screen those harboring promising substituents in order to guide efficient fragment linking. This led to NKI1, a new lead compound inhibiting NADK that showed in vitro bactericidal activity against Staphylococcus aureus. In a murine model of infection, NKI1 restricted survival of the bacteria, including methicillin-resistant S. aureus. Collectively, these findings identify bacterial NADK as a potential drug target and NKI1 as a lead compound in the treatment of staphylococcal infections.


Assuntos
Antibacterianos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Adenina/química , Adenina/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Feminino , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade
16.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848284

RESUMO

Listeria monocytogenes is a pathogenic bacterium causing potentially fatal foodborne infections in humans and animals. While the mechanisms used by Listeria to manipulate its host have been thoroughly characterized, how the host controls bacterial virulence factors remains to be extensively deciphered. Here, we found that the secreted Listeria virulence protein InlC is monoubiquitinated by the host cell machinery on K224, restricting infection. We show that the ubiquitinated form of InlC interacts with the intracellular alarmin S100A9, resulting in its stabilization and in increased reactive oxygen species production by neutrophils in infected mice. Collectively, our results suggest that posttranslational modification of InlC exacerbates the host response upon Listeria infection.IMPORTANCE The pathogenic potential of Listeria monocytogenes relies on the production of an arsenal of virulence determinants that have been extensively characterized, including surface and secreted proteins of the internalin family. We have previously shown that the Listeria secreted internalin InlC interacts with IκB kinase α to interfere with the host immune response (E. Gouin, M. Adib-Conquy, D. Balestrino, M.-A. Nahori, et al., Proc Natl Acad Sci USA, 107:17333-17338, 2010, https://doi.org/10.1073/pnas.1007765107). In the present work, we report that InlC is monoubiquitinated on K224 upon infection of cells and provide evidence that ubiquitinated InlC interacts with and stabilizes the alarmin S100A9, which is a critical regulator of the immune response and inflammatory processes. Additionally, we show that ubiquitination of InlC causes an increase in reactive oxygen species production by neutrophils in mice and restricts Listeria infection. These findings are the first to identify a posttranscriptional modification of an internalin contributing to host defense.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Listeria/fisiologia , Listeriose/metabolismo , Listeriose/microbiologia , Calgranulina B/metabolismo , Suscetibilidade a Doenças , Células Epiteliais , Humanos , Ubiquitinação
17.
Cell Host Microbe ; 26(5): 691-701.e5, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31726031

RESUMO

Understanding the role of the microbiota components in either preventing or favoring enteric infections is critical. Here, we report the discovery of a Listeria bacteriocin, Lmo2776, which limits Listeria intestinal colonization. Oral infection of conventional mice with a Δlmo2776 mutant leads to a thinner intestinal mucus layer and higher Listeria loads both in the intestinal content and deeper tissues compared to WT Listeria. This latter difference is microbiota dependent, as it is not observed in germ-free mice. Strikingly, it is phenocopied by pre-colonization of germ-free mice before Listeria infection with Prevotella copri, an abundant gut-commensal bacteria, but not with the other commensals tested. We further show that Lmo2776 targets P. copri and reduces its abundance. Together, these data unveil a role for P.copri in exacerbating intestinal infection, highlighting that pathogens such as Listeria may selectively deplete microbiota bacterial species to avoid excessive inflammation.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Listeriose/prevenção & controle , Prevotella/crescimento & desenvolvimento , Animais , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Humanos , Inflamação/prevenção & controle , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Prevotella/efeitos dos fármacos
18.
Nat Commun ; 10(1): 5383, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772204

RESUMO

ISG15 is an interferon-stimulated, ubiquitin-like protein, with anti-viral and anti-bacterial activity. Here, we map the endogenous in vivo ISGylome in the liver following Listeria monocytogenes infection by combining murine models of reduced or enhanced ISGylation with quantitative proteomics. Our method identifies 930 ISG15 sites in 434 proteins and also detects changes in the host ubiquitylome. The ISGylated targets are enriched in proteins which alter cellular metabolic processes, including upstream modulators of the catabolic and antibacterial pathway of autophagy. Computational analysis of substrate structures reveals that a number of ISG15 modifications occur at catalytic sites or dimerization interfaces of enzymes. Finally, we demonstrate that animals and cells with enhanced ISGylation have increased basal and infection-induced autophagy through the modification of mTOR, WIPI2, AMBRA1, and RAB7. Taken together, these findings ascribe a role of ISGylation to temporally reprogram organismal metabolism following infection through direct modification of a subset of enzymes in the liver.


Assuntos
Autofagia/fisiologia , Citocinas/metabolismo , Listeriose/metabolismo , Acetilação , Animais , Citocinas/genética , Listeria monocytogenes/patogenicidade , Listeriose/patologia , Fígado/metabolismo , Fígado/microbiologia , Lisina/metabolismo , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
19.
Microbes Infect ; 21(5-6): 202-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31252217

RESUMO

Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged less than 6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer membrane proteins (Yops), the broad range protease Pla, pathogen-associated molecular patterns (PAMPs) and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and less than 48 h for pneumonic plague). In here, we review recent research advances on Y. pestis evolution, virulence factors function, bacterial strategies to subvert mammalian innate immune responses, vaccination and problems associated to pneumonic plague diagnosis.

20.
Methods Mol Biol ; 2010: 85-97, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31177433

RESUMO

Bioluminescence imaging (BLI) has become a major strategy for real-time analysis of dynamic biological processes. In particular, bioluminescent reporter microorganisms have been designed to advance our understanding of infectious diseases. Non-invasive monitoring of light-emitting pathogenic bacteria has revealed novel features of pathogenesis and enabled quantitative and qualitative analysis of antibacterial therapies. Transcriptional gene fusions using the bacterial luciferase operon luxCDABE as a reporter have been successfully used to monitor gene expression in vitro and in vivo, leading to valuable applications and major findings. In this chapter, we describe the construction of Yersinia pestis strains bearing a chromosomal copy of the luxCDABE operon under the control of promoters regulated by temperature and their application to quantify gene expression in real-time in bacteria growing in vitro and in a murine bubonic plague model.


Assuntos
Medições Luminescentes/métodos , Peste/microbiologia , Regiões Promotoras Genéticas , Yersinia pestis/genética , Animais , Modelos Animais de Doenças , Feminino , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Camundongos , Óperon , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...