Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3628, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336909

RESUMO

LaTe3 is a non-centrosymmetric material with time reversal symmetry, where the charge density wave is hosted by the Te bilayers. Here, we show that LaTe3 hosts a Kramers nodal line-a twofold degenerate nodal line connecting time reversal-invariant momenta. We use angle-resolved photoemission spectroscopy, density functional theory with an experimentally reported modulated structure, effective band structures calculated by band unfolding, and symmetry arguments to reveal the Kramers nodal line. Furthermore, calculations confirm that the nodal line imposes gapless crossings between the bilayer-split charge density wave-induced shadow bands and the main bands. In excellent agreement with the calculations, spectroscopic data confirm the presence of the Kramers nodal line and show that the crossings traverse the Fermi level. Furthermore, spinless nodal lines-completely gapped out by spin-orbit coupling-are formed by the linear crossings of the shadow and main bands with a high Fermi velocity.

2.
J Phys Condens Matter ; 33(4)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33146151

RESUMO

In this work, using density functional theory based electronic structure calculations, we carry out a comparative study of geometric, mechanical, electronic, magnetic, and thermoelectric properties of CoxTaZalloys, whereZ= Si, Ge and Sn andx= 1 and 2. In the present study, a systematic approach has been taken to perform calculations to probe the possibility of existence of a tetragonal (martensite) phase in these alloys and also to perform a comparative study of various physical properties of the six systems, mentioned above, in the cubic and possible tetragonal phases. From our calculations, a tetragonal phase has been found to be stable up to about 400 K in case of Co2TaSi and Co2TaGe alloys, and up to about 115 K for Co2TaSn, indicating the presence of room temperature cubic phase in the latter alloy unlike the former two. Further, the results based on the energetics and electronic structure have been found to corroborate well with the elastic properties. All the above-mentioned full Heusler alloys (FHAs) show magnetic behavior with metallicity in both the phases. However, their half Heusler counterparts exhibit non-magnetic semi-conducting behavior in the cubic phase. We calculate and compare the thermoelectric properties, in detail, of all the materials in the cubic and possible tetragonal phases. In the cubic phase, the half Heusler alloys exhibit improved thermoelectric properties compared to the respective FHAs. Furthermore, it is observed that the FHAs exhibit higher (by about an order of magnitude) values of Seebeck coefficients in their cubic phases, compared to those in the tetragonal phases (which are of the order of only a few micro-volts/Kelvin). The observed behaviors of the transport properties of the probed materials have been analyzed using the topology of the Fermi surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...