Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(14): 8146-8164, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32597951

RESUMO

Riboswitches are structured RNA motifs that recognize metabolites to alter the conformations of downstream sequences, leading to gene regulation. To investigate this molecular framework, we determined crystal structures of a preQ1-I riboswitch in effector-free and bound states at 2.00 Å and 2.65 Å-resolution. Both pseudoknots exhibited the elusive L2 loop, which displayed distinct conformations. Conversely, the Shine-Dalgarno sequence (SDS) in the S2 helix of each structure remained unbroken. The expectation that the effector-free state should expose the SDS prompted us to conduct solution experiments to delineate environmental changes to specific nucleobases in response to preQ1. We then used nudged elastic band computational methods to derive conformational-change pathways linking the crystallographically-determined effector-free and bound-state structures. Pathways featured: (i) unstacking and unpairing of L2 and S2 nucleobases without preQ1-exposing the SDS for translation and (ii) stacking and pairing L2 and S2 nucleobases with preQ1-sequestering the SDS. Our results reveal how preQ1 binding reorganizes L2 into a nucleobase-stacking spine that sequesters the SDS, linking effector recognition to biological function. The generality of stacking spines as conduits for effector-dependent, interdomain communication is discussed in light of their existence in adenine riboswitches, as well as the turnip yellow mosaic virus ribosome sensor.


Assuntos
Simulação de Dinâmica Molecular , Riboswitch , Pareamento de Bases , Regulação Bacteriana da Expressão Gênica , Guanina/análogos & derivados , Dodecilsulfato de Sódio/química , Thermoanaerobacter/genética
2.
J Biol Chem ; 295(9): 2555-2567, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659117

RESUMO

Riboswitches are a class of nonprotein-coding RNAs that directly sense cellular metabolites to regulate gene expression. They are model systems for analyzing RNA-ligand interactions and are established targets for antibacterial agents. Many studies have analyzed the ligand-binding properties of riboswitches, but this work has outpaced our understanding of the underlying chemical pathways that govern riboswitch-controlled gene expression. To address this knowledge gap, we prepared 15 mutants of the preQ1-II riboswitch-a structurally and biochemically well-characterized HLout pseudoknot that recognizes the metabolite prequeuosine1 (preQ1). The mutants span the preQ1-binding pocket through the adjoining Shine-Dalgarno sequence (SDS) and include A-minor motifs, pseudoknot-insertion helix P4, U·A-U base triples, and canonical G-C pairs in the anti-SDS. As predicted-and confirmed by in vitro isothermal titration calorimetry measurements-specific mutations ablated preQ1 binding, but most aberrant binding effects were corrected by compensatory mutations. In contrast, functional analysis in live bacteria using a riboswitch-controlled GFPuv-reporter assay revealed that each mutant had a deleterious effect on gene regulation, even when compensatory changes were included. Our results indicate that effector binding can be uncoupled from gene regulation. We attribute loss of function to defects in a chemical interaction network that links effector binding to distal regions of the fold that support the gene-off RNA conformation. Our findings differentiate effector binding from biological function, which has ramifications for riboswitch characterization. Our results are considered in the context of synthetic ligands and drugs that bind tightly to riboswitches without eliciting a biological response.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mutação , Pirimidinonas/metabolismo , Pirróis/metabolismo , Riboswitch/genética , Sequência de Bases , Sítios de Ligação , Pirimidinonas/análise , Pirróis/análise , RNA Bacteriano/genética
3.
J Chem Theory Comput ; 14(12): 6598-6612, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30375860

RESUMO

To benchmark RNA force fields, we compared the folding stabilities of three 12-nucleotide hairpin stem loops estimated by simulation to stabilities determined by experiment. We used umbrella sampling and a reaction coordinate of end-to-end (5' to 3' hydroxyl oxygen) distance to estimate the free energy change of the transition from the native conformation to a fully extended conformation with no hydrogen bonds between non-neighboring bases. Each simulation was performed four times using the AMBER FF99+bsc0+χOL3 force field, and each window, spaced at 1 Å intervals, was sampled for 1 µs, for a total of 552 µs of simulation. We compared differences in the simulated free energy changes to analogous differences in free energies from optical melting experiments using thermodynamic cycles where the free energy change between stretched and random coil sequences is assumed to be sequence-independent. The differences between experimental and simulated ΔΔ G° are, on average, 0.98 ± 0.66 kcal/mol, which is chemically accurate and suggests that analogous simulations could be used predictively. We also report a novel method to identify where replica free energies diverge along a reaction coordinate, thus indicating where additional sampling would most improve convergence. We conclude by discussing methods to more economically perform these simulations.


Assuntos
Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , RNA/química , Sequência de Bases , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , RNA/genética , Termodinâmica
4.
Biochemistry ; 57(31): 4620-4628, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897738

RESUMO

Noncoding RNAs engage in numerous biological activities including gene regulation. To fully understand RNA function it is necessary to probe biologically relevant conformations in living cells. To address this challenge, we coupled RNA-mediated regulation of the green fluorescent protein (GFP)uv-reporter gene to icSHAPE (in cell Selective 2'-Hydroxyl Acylation analyzed by Primer Extension). Our transcript-specific approach provides sensitive, fluorescence-based readout of the regulatory-RNA status as a means to coordinate chemical modification experiments. We chose a plasmid-based reporter compatible with Escherichia coli to allow use of knockout strains that eliminate endogenous effector biosynthesis. The approach was piloted using the Lactobacillus rhamnosus ( Lrh) preQ1-II riboswitch, which senses the pyrrolopyrimidine metabolite preQ1. Using an E. coli Δ queF strain incapable of preQ1 anabolism, the Lrh riboswitch yielded nearly one log unit of GFPuv-gene repression resulting from exogenously added preQ1. We then subjected cells in gene "on" and "off" states to icSHAPE. The resulting differential analysis indicated reduction in Lrh riboswitch flexibility in the P3 helix of the pseudoknot, which comprises the ribosome-binding site (RBS) paired with the anti-RBS. Such expression platform modulation was not observed by in vitro chemical probing and demonstrates that the crowded cellular environment does not preclude detection of compact and loose RNA-regulatory conformations. Here we describe the design, methods, interpretation, and caveats of Reporter Coupled (ReCo) icSHAPE. We also describe mapping of the differential ReCo-icSHAPE results onto the Lrh riboswitch-preQ1 cocrystal structure. The approach should be readily applicable to functional RNAs triggered by effectors or environmental variations.


Assuntos
Riboswitch/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Pirimidinas/metabolismo , Pirróis/metabolismo , Riboswitch/genética
5.
J Biol Chem ; 292(23): 9441-9450, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28455443

RESUMO

Divalent ions fulfill essential cellular roles and are required for virulence by certain bacteria. Free intracellular Mg2+ can approach 5 mm, but at this level Mn2+, Ni2+, or Co2+ can be growth-inhibitory, and magnesium fluoride is toxic. To maintain ion homeostasis, many bacteria have evolved ion sensors embedded in the 5'-leader sequences of mRNAs encoding ion uptake or efflux channels. Here, we review current insights into these "metalloriboswitches," emphasizing ion-specific binding by structured RNA aptamers and associated conformational changes in downstream signal sequences. This riboswitch-effector interplay produces a layer of gene regulatory feedback that has elicited interest as an antibacterial target.


Assuntos
Bactérias/metabolismo , Metais Pesados/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/metabolismo , Riboswitch/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA