Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612400

RESUMO

Human Immunodeficiency Virus type 1 (HIV-1)-associated neurocognitive disorders (HANDs) remain prevalent in HIV-1-infected individuals despite the evident success of combined antiretroviral therapy (cART). The mechanisms underlying HAND prevalence in the cART era remain perplexing. Ample evidence indicates that HIV-1 envelope glycoprotein protein 120 (gp120), a potent neurotoxin, plays a pivotal role in HAND pathogenesis. Methamphetamine (Meth) abuse exacerbates HANDs, but how this occurs is not fully understood. We hypothesize that Meth exacerbates HANDs by enhancing gp120-mediated neuroinflammation. To test this hypothesis, we studied the effect of Meth on gp120-induced microglial activation and the resultant production of proinflammatory cytokines in primary rat microglial cultures. Our results show that Meth enhanced gp120-induced microglial activation, as revealed by immunostaining and Iba-1 expression, and potentiated gp120-mediated NLRP3 expression and IL-1ß processing and release, as assayed by immunoblotting and ELISA. Meth also augmented the co-localization of NLRP3 and caspase-1, increased the numbers of NLRP3 puncta and ROS production, increased the levels of iNOS expression and NO production, and increased the levels of cleaved gasderminD (GSDMD-N; an executor of pyroptosis) in gp120-primed microglia. The Meth-associated effects were attenuated or blocked by MCC950, an NLRP3 inhibitor, or Mito-TEMPO, a mitochondrial superoxide scavenger. These results suggest that Meth enhances gp120-associated microglial NLRP3 activation and the resultant proinflammatory responses via mitochondria-dependent signaling.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , HIV-1 , Animais , Ratos , Glicoproteínas , Inflamassomos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR
3.
NeuroImmune Pharm Ther ; 3(1): 17-32, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532783

RESUMO

Tay-Sachs disease (TSD) and its severe form Sandhoff disease (SD) are autosomal recessive lysosomal storage metabolic disorders, which often result into excessive GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Although patients with these diseases appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to early death accompanied by manifestation of motor difficulties and gradual loss of behavioral skills. Unfortunately, there is still no effective treatment available for TSD/SD. The present study highlights the importance of cinnamic acid (CA), a naturally occurring aromatic fatty acid present in a number of plants, in inhibiting the disease process in a transgenic mouse model of SD. Oral administration of CA significantly attenuated glial activation and inflammation and reduced the accumulation of GM2 gangliosides/glycoconjugates in the cerebral cortex of Sandhoff mice. Besides, oral CA also improved behavioral performance and increased the survival of Sandhoff mice. While assessing the mechanism, we found that oral administration of CA increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Sandhoff mice and that oral CA remained unable to reduce glycoconjugates, improve behavior and increase survival in Sandhoff mice lacking PPARα. Our results indicate a beneficial function of CA that utilizes a PPARα-dependent mechanism to halt the progression of SD and thereby increase the longevity of Sandhoff mice.

4.
NeuroImmune Pharm Ther ; 3(1): 47-59, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532785

RESUMO

Huntington Disease (HD), a devastating hereditary neurodegenerative disorder, is caused by expanded CAG trinucleotide repeats in the huntingtin gene (Htt) on chromosome 4. Currently, there is no effective therapy for HD. Although aspirin, acetylsalicylic acid, is one of the most widely-used analgesics throughout the world, it has some side effects. Even at low doses, oral aspirin can cause gastrointestinal symptoms, such as heartburn, upset stomach, or pain. Therefore, to bypass the direct exposure of aspirin to stomach, here, we described a new mode of use of aspirin and demonstrated that nebulization of low-dose of aspirin (10 µg/mouse/d=0.4 mg/kg body wt/d roughly equivalent to 28 mg/adult human/d) alleviated HD pathology in N171-82Q transgenic mice. Our immunohistochemical and western blot studies showed that daily aspirin nebulization significantly reduced glial activation, inflammation and huntingtin pathology in striatum and cortex of N171-82Q mice. Aspirin nebulization also protected transgenic mice from brain volume shrinkage and improved general motor behaviors. Collectively, these results highlight that nebulization of low-dose aspirin may have therapeutic potential in the treatment of HD.

5.
Bioessays ; 46(1): e2300176, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37919861

RESUMO

The transcription factor Nrf2 is the master regulator of cellular stress response, facilitating the expression of cytoprotective genes, including those responsible for drug detoxification, immunomodulation, and iron metabolism. FDA-approved Nrf2 activators, Tecfidera and Skyclarys for patients with multiple sclerosis and Friedreich's ataxia, respectively, are non-specific alkylating agents exerting side effects. Nrf2 is under feedback regulation through its target gene, transcriptional repressor Bach1. Specifically, in Parkinson's disease and other neurodegenerative diseases with Bach1 dysregulation, excessive Bach1 accumulation interferes with Nrf2 activation. Bach1 is a heme sensor protein, which, upon heme binding, is targeted for proteasomal degradation, relieving the repression of Nrf2 target genes. Ideally, a combination of Nrf2 stabilization and Bach1 inhibition is necessary to achieve the full therapeutic benefits of Nrf2 activation. Here, we discuss recent advances and future perspectives in developing small molecule inhibitors of Bach1, highlighting the significance of the Bach1/Nrf2 signaling pathway as a promising neurotherapeutic strategy.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica , Heme
6.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132111

RESUMO

Tay-Sachs disease (TSD) is a progressive heritable neurodegenerative disorder characterized by the deficiency of the lysosomal ß-hexosaminidase enzyme (Hex-/-) and the storage of GM2 ganglioside, as well as other related glycoconjugates. Along with motor difficulties, TSD patients also manifest a gradual loss of skills and behavioral problems, followed by early death. Unfortunately, there is no cure for TSD; however, research on treatments and therapeutic approaches is ongoing. This study underlines the importance of gemfibrozil (GFB), an FDA-approved lipid-lowering drug, in inhibiting the disease process in a transgenic mouse model of Tay-Sachs. Oral administration of GFB significantly suppressed glial activation and inflammation, while also reducing the accumulation of GM2 gangliosides/glycoconjugates in the motor cortex of Tay-Sachs mice. Furthermore, oral GFB improved behavioral performance and increased the life expectancy of Tay-Sachs mice. While investigating the mechanism, we found that oral administration of GFB increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Tay-Sachs mice, and that GFB remained unable to reduce glycoconjugates and improve behavior and survival in Tay-Sachs mice lacking PPARα. Our results indicate a beneficial function of GFB that employs a PPARα-dependent mechanism to halt the progression of TSD and increase longevity in Tay-Sachs mice.


Assuntos
Doença de Tay-Sachs , Humanos , Animais , Camundongos , Doença de Tay-Sachs/tratamento farmacológico , PPAR alfa/uso terapêutico , Genfibrozila/farmacologia , Genfibrozila/uso terapêutico , beta-N-Acetil-Hexosaminidases , Hipolipemiantes/uso terapêutico , Glicoconjugados
7.
Electrophoresis ; 44(19-20): 1519-1538, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548630

RESUMO

The broadening of analyte streams, as they migrate through a free-flow electrophoresis (FFE) channel, often limits the resolving power of FFE separations. Under laminar flow conditions, such zonal spreading occurs due to analyte diffusion perpendicular to the direction of streamflow and variations in the lateral distance electrokinetically migrated by the analyte molecules. Although some of the factors that give rise to these contributions are inherent to the FFE method, others originate from non-idealities in the system, such as Joule heating, pressure-driven crossflows, and a difference between the electrical conductivities of the sample stream and background electrolyte. The injection process can further increase the stream width in FFE separations but normally influencing all analyte zones to an equal extent. Recently, several experimental and theoretical works have been reported that thoroughly investigate the various contributions to stream variance in an FFE device for better understanding, and potentially minimizing their magnitudes. In this review article, we carefully examine the findings from these studies and discuss areas in which more work is needed to advance our comprehension of the zone broadening contributions in FFE assays.


Assuntos
Eletroforese , Eletroforese/métodos , Difusão , Condutividade Elétrica
8.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552543

RESUMO

Glial activation and inflammation coincide with neurofibrillary tangle (NFT) formation in neurons. However, the mechanism behind the interaction between tau fibrils and glia is poorly understood. Here, we found that tau preformed fibrils (PFFs) caused induction of inflammation in microglia by specifically activating the TLR2/MyD88, but not the TLR4/MyD88, pathway. Accordingly, the WT TLR2-interacting domain of MyD88 (wtTIDM) peptide inhibited tau PFF-induced activation of the TLR2/MyD88/NF-κB pathway, resulting in reduced inflammation. Nasal administration of wtTIDM in P301S tau-expressing PS19 mice was found to inhibit gliosis and inflammatory markers, as well as to reduce pathogenic tau in the hippocampus, resulting in improved cognitive behavior in PS19 mice. The inhibitory effect of wtTIDM on tau pathology was absent in PS19 mice lacking TLR2, reinforcing the essential involvement of TLR2 in wtTIDM-mediated effects in vivo. Studying the mechanism further, we found that the tau promoter harbored a potential NF-κB-binding site and that proinflammatory molecules increased transcription of tau in neurons via NF-κB. These results suggest that tau-induced neuroinflammation and neuropathology require TLR2 and that neuroinflammation directly upregulates tau in neurons via NF-κB, highlighting a direct connection between inflammation and tauopathy.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Inflamação/patologia , Camundongos Transgênicos , Microglia/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37457651

RESUMO

Despite the introduction of combined antiretroviral therapy (cART) HIV-1 virus persists in the brain in a latent or restricted manner and viral proteins, such as gp120, continue to play a significant disease-inciting role. Gp120 is known to interact with N-methyl-D-aspartate (NMDA) receptors (NMDARs) resulting in neuronal injury. Glutamate is the main excitatory neurotransmitter in the brain and plays an important role in cognitive function and dysregulation of excitatory synaptic transmission impairs neurocognition. It is our hypothesis that gp120 may alter synaptic function via modulating glutamate function from a physiological molecule to a pathophysiological substance. To test this hypothesis, we studied the modulatory effects of gp120 and glutamate on NMDAR-mediated spontaneous excitatory postsynaptic current (sEPSCNMDAR) and dynamic dendritic spine changes in rat cortical neuronal cultures. Our results revealed that gp120 and glutamate each, at low concentrations, had no significant effects on sEPSCNMDAR and dendritic spines, but increased sEPSCNMDAR frequency, decreased numbers of dendritic spines when tested in combination. The observed effects were blocked by either a CXCR4 blocker or an NMDAR antagonist, indicating the involvements of chemokine receptor CXCR4 and NMDARs in gp120 modulation of glutamate effects. These results may imply a potential mechanism for HIV-1-associated neuropathogenesis in the cART era.

10.
Viruses ; 15(5)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37243203

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of the coronavirus disease 2019 (COVID-19) pandemic, a fatal respiratory illness. The associated risk factors for COVID-19 are old age and medical comorbidities. In the current combined antiretroviral therapy (cART) era, a significant portion of people living with HIV-1 (PLWH) with controlled viremia is older and with comorbidities, making these people vulnerable to SARS-CoV-2 infection and COVID-19-associated severe outcomes. Additionally, SARS-CoV-2 is neurotropic and causes neurological complications, resulting in a health burden and an adverse impact on PLWH and exacerbating HIV-1-associated neurocognitive disorder (HAND). The impact of SARS-CoV-2 infection and COVID-19 severity on neuroinflammation, the development of HAND and preexisting HAND is poorly explored. In the present review, we compiled the current knowledge of differences and similarities between SARS-CoV-2 and HIV-1, the conditions of the SARS-CoV-2/COVID-19 and HIV-1/AIDS syndemic and their impact on the central nervous system (CNS). Risk factors of COVID-19 on PLWH and neurological manifestations, inflammatory mechanisms leading to the neurological syndrome, the development of HAND, and its influence on preexisting HAND are also discussed. Finally, we have reviewed the challenges of the present syndemic on the world population, with a particular emphasis on PLWH.


Assuntos
COVID-19 , Infecções por HIV , Soropositividade para HIV , HIV-1 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , SARS-CoV-2 , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/etiologia , Sistema Nervoso Central , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia
11.
J Sci Food Agric ; 103(10): 4742-4754, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764833

RESUMO

Minor millet grains are the abode of healthy constituents of human concern that contribute to healthy longevity. Additionally, they are excellent in nutritional value including macronutrients namely, protein (7-13%), carbohydrates (60-70%), fat (1.5-5%), fiber (2-7%) and for micronutrients as well namely; iron, calcium, phosphorus, and magnesium, etc. All these beneficial traits along with the availability of bioactive constituents (polyphenols and antioxidants) prove them to be therapeutic in action and also uplift the immunity among users. Employed isolation tactics for starch also govern yield characteristics and is usually preferred by way of wet method. Minor millets are abundant in starch (50-70%) thus application broadness is another attribute which could be addressed in vivid food segments. In case, native starches somehow possess least application credentials in food and non-food sectors thus modification is the only alternative to eliminate shortcomings. As in trend, modification using physical, chemical, and enzymatic ways have a wide impact on the properties of millet starch. The present review summarizes the nutritional, bioactive and therapeutic potential of minor millets, along with ways of starch modification and product development through millet involvement. © 2023 Society of Chemical Industry.


Assuntos
Milhetes , Amido , Humanos , Milhetes/química , Amido/química , Grão Comestível , Valor Nutritivo , Antioxidantes
12.
J Neurosci ; 43(10): 1814-1829, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697260

RESUMO

Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal inherited neurodegenerative disease of children that occurs because of defective function of the lysosomal membrane glycoprotein CLN3. JNCL features glial activation and accumulation of autofluorescent storage material containing subunit c of mitochondrial ATP synthase (SCMAS), ultimately resulting into neuronal loss. Until now, no effective therapy is available for JNCL. This study underlines the possible therapeutic importance of gemfibrozil, an activator of peroxisome proliferator-activated receptor α (PPARα) and a lipid-lowering drug approved by the Food and Drug Administration in an animal model of JNCL. Oral gemfibrozil treatment reduced microglial and astroglial activation, attenuated neuroinflammation, restored the level of transcription factor EB (TFEB; the master regulator of lysosomal biogenesis), and decreased the accumulation of storage material SCMAS in somatosensory barrel field (SBF) cortex of Cln3Δex7/8 (Cln3ΔJNCL) mice of both sexes. Accordingly, gemfibrozil treatment also improved locomotor activities of Cln3ΔJNCL mice. While investigating the mechanism, we found marked loss of PPARα in the SBF cortex of Cln3ΔJNCL mice, which increased after gemfibrozil treatment. Oral gemfibrozil also stimulated the recruitment of PPARα to the Tfeb gene promoter in vivo in the SBF cortex of Cln3ΔJNCL mice, indicating increased transcription of Tfeb in the CNS by gemfibrozil treatment via PPARα. Moreover, disease pathologies aggravated in Cln3ΔJNCL mice lacking PPARα (Cln3ΔJNCLΔPPARα) and gemfibrozil remained unable to decrease SCMAS accumulation, reduce glial activation, and improve locomotor performance of Cln3ΔJNCLΔPPARα mice. These results suggest that activation of PPARα may be beneficial for JNCL and that gemfibrozil may be repurposed for the treatment of this incurable disease.SIGNIFICANCE STATEMENT Despite intense investigations, no effective therapy is available for JNCL, an incurable inherited lysosomal storage disorder. Here, we delineate that oral administration of gemfibrozil, a lipid-lowering drug, decreases glial inflammation, normalizes and/or upregulates TFEB, and reduces accumulation of autofluorescent storage material in SBF cortex to improve locomotor activities in Cln3Δex7/8 (Cln3ΔJNCL) mice. Aggravation of disease pathology in Cln3ΔJNCL mice lacking PPARα (Cln3ΔJNCLΔPPARα) and inability of gemfibrozil to decrease SCMAS accumulation, reduce glial activation, and improve locomotor performance of Cln3ΔJNCLΔPPARα mice delineates an important role of PPARα in this process. These studies highlight a new property of gemfibrozil and indicate its possible therapeutic use in JNCL patients.


Assuntos
Lipofuscinoses Ceroides Neuronais , PPAR alfa , Camundongos , Animais , Genfibrozila/farmacologia , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/patologia , Neuroglia/patologia , Microglia/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética
13.
Res Sq ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168345

RESUMO

Background: Human Immunodeficiency Virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) remain prevalent in HIV-1-infected individuals despite the evident success of combined antiretroviral therapy (cART). The mechanisms under HAND prevalence in the cART era remain perplexing. Ample evidence indicates that HIV-1 envelope glycoprotein protein 120 (gp120), a potent neurotoxin, plays a pivotal role in the HAND pathogenesis. Methamphetamine (Meth) abuse exacerbates HAND. How Meth exacerbates HAND is not fully understood. This study was to test the hypothesis that Meth exacerbates HAND by enhancing gp120-mediated proinflammatory responses in the brain, worsening the pathogenesis of HAND. Methods: Experiments were carried out on primary microglial cultures prepared from neonatal SD rats. The purity of microglia was determined by staining with anti-CD11b. Meth and gp120 were applied to microglial cultures. Microglial activation was revealed by immunostaining and Iba-1 expression. The protein expression levels of Pro-IL-1ß, Il-1ß, Iba-1, iNOS, NLRP3, GSDMD and GSDMD-N were detected by western blotting analyses. The levels of proinflammatory cytokine and NO production in the microglia culture supernatants were assayed by ELISA and Griess reagent systems, respectively. NLRP3 activation was uncovered by fluorescent microscopy images displaying NLRP3 puncta labeled by anti-NLRP3 antibody. NLRP3 co-localization with caspase-1 was labeled with antibodies. One-way ANOVA with post hoc Tukey's multiple comparison tests was employed for statistical analyses. Results: Meth enhanced gp120-induced microglia activation revealed by immunostaining and Iba-1 expression, and potentiated gp120-mediated NLRP3 expression, IL-1ß processing and release assayed by immunoblot and ELISA. Meth also augmented the co-localization of NLRP3 and caspase-1, increased the numbers of NLRP3 puncta and ROS production, elevated levels of iNOS expression and NO production, and enhanced levels of cleaved gasderminD (GSDMD-N, an executor of pyroptosis) in gp120-primed microglia. The Meth-associated effects were attenuated or blocked by MCC950, an NLRP3 inhibitor, or Mito-TEMPO, a mitochondrial superoxide scavenger, indicating the involvement of mitochondria in Meth enhancement of NLRP3 inflammasome activation in gp120-primed microglia. Conclusions: These results suggest that Meth enhanced gp120-associated microglial NLRP3 activation and resultant proinflammatory responses via mitochondria-dependent signaling.

14.
Mikrochim Acta ; 189(12): 478, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441250

RESUMO

A significant amplification in the fluorescence signal is demonstrated when measured in metal (aluminum)-coated fluidic wells with volumes on the order of a nanoliter or smaller (nanowells). Photolithographic and wet etching procedures were used to fabricate these nanowells on glass substrates followed by vapor deposition of an aluminum layer on them. The fluorescence signal recorded in these structures was enhanced due to the reflection of the incident and emitted radiation by the metal layer as well as focusing of this light by the curvature of the well surface. While the first effect amplified the background signal in the entire assay chamber, the latter one produced signal hotspots around the edges and center of the nanowell. In this work, we were able to realize over a 20-fold enhancement in the fluorescence signal upon quantitating it at the central hotspot of an aluminum-coated circular nanowell with a depth and photo-patterned diameter of 30 µm and 38 µm, respectively. More interestingly, our experiments indicate that this enhancement factor may be further improved by optimizing the curvature of the nanowell surface to merge all the signal hotspots within a smaller detection zone. Finally, quantitative assays using horseradish peroxidase samples were performed on the reported signal enhancement platform to further demonstrate its utility for making sensitive analytical measurements.


Assuntos
Alumínio , Líquidos Corporais , Metais , Bioensaio , Gases
15.
Anal Chim Acta ; 1233: 340476, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283775

RESUMO

In this article, we report significant improvements in the resolving power of pressure-driven charge based separations performed in sub-micrometer deep glass channels upon introducing an electrokinetic backflow in the system. Such improvements are realized as axial electrophoresis aids the pressure-driven separation process in negatively charged glass conduits under these conditions. In addition, the electroosmotic backflow slows down the bulk transport of the background electrolyte subjecting the sample to the separation field for prolonged periods and yields a higher fluid shear across the channel depth further assisting the separation process. Although this increased shear also contributes to additional hydrodynamic dispersion, such contributions are usually small due to fast diffusion across the flow streamlines in sub-micrometer deep channels. In the present work, the pressure-driven flow was generated on-chip by fabricating a polyacrylamide based gel membrane within a chosen access hole upstream of the separation channel. Upon application of an electric field across this structure, the electroosmotic flow generated in the open channel interfacing the membrane was partially blocked producing the needed pressure-gradient. Optimization of the electrical voltage applied to the downstream end of the separation channel then yielded a suitable electrokinetic backflow that significantly improved the resolving power of our separations. For a sample comprising of three 5-TAMRA, SE-labeled amino acids, the noted strategy improved the separation resolution by over an order of magnitude compared to the case when no electrokinetic backflow was present. The band broadening in these separations was also assessed to understand its dependence on the operating conditions.


Assuntos
Aminoácidos , Eletro-Osmose , Eletroforese , Hidrodinâmica , Difusão
16.
Antioxidants (Basel) ; 11(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139853

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35891930

RESUMO

Despite the introduction of vaccines and drugs for SARS-CoV-2, the COVID-19 pandemic continues to spread throughout the world. In severe COVID-19 patients, elevated levels of proinflammatory cytokines have been detected in the blood, lung cells, and bronchoalveolar lavage, which is referred to as a cytokine storm, a consequence of overactivation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome and resultant excessive cytokine production. The hyperinflammatory response and cytokine storm cause multiorgan impairment including the central nervous system, in addition to a detriment to the respiratory system. Hyperactive NLRP3 inflammasome, due to dysregulated immune response, is the primary cause of COVID-19 severity. The severity could be enhanced due to viral evolution leading to the emergence of mutated variants of concern, such as delta and omicron. In this review, we elaborate on the inflammatory responses associated with the NLRP3 inflammasome activation in COVID-19 pathogenesis, the mechanisms for the NLRP3 inflammasome activation and pathway involved, cytokine storm, and neurological complications as long-term consequences of SARS-CoV-2 infection. Also discussed is the therapeutic potential of NLRP3 inflammasome inhibitors for the treatment of COVID-19.

18.
Cell Rep ; 40(2): 111058, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830804

RESUMO

This study underlines the importance of treadmill exercise in reducing α-synuclein (α-syn) spreading in the A53T brain and protecting nigral dopaminergic neurons. Preformed α-syn fibril (PFF) seeding in the internal capsule of young A53T α-syn mice leads to increased spreading of α-syn to substantia nigra and motor cortex and concomitant loss of nigral dopaminergic neurons. However, regular treadmill exercise decreases α-syn spreading in the brain and protects nigral dopaminergic neurons in PFF-seeded mice. Accordingly, treadmill exercise also mitigates α-synucleinopathy in aged A53T mice. While investigating this mechanism, we have observed that treadmill exercise induces the activation of peroxisome proliferator-activated receptor α (PPARα) in the brain to stimulate lysosomal biogenesis via TFEB. Accordingly, treadmill exercise remains unable to stimulate TFEB and reduce α-synucleinopathy in A53T mice lacking PPARα, and fenofibrate, a prototype PPARα agonist, reduces α-synucleinopathy. These results delineate a beneficial function of treadmill exercise in reducing α-syn spreading in the brain via PPARα.


Assuntos
PPAR alfa , Condicionamento Físico Animal , Sinucleinopatias , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos , PPAR alfa/metabolismo , Condicionamento Físico Animal/fisiologia , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
19.
Analyst ; 147(13): 3118, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35674226

RESUMO

Correction for 'Microfluidic ELISA employing an enzyme substrate and product species with similar detection properties' by Basant Giri et al., Analyst, 2018, 143, 989-998, https://doi.org/10.1039/C7AN01671A.

20.
Diagnostics (Basel) ; 12(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741313

RESUMO

The world is grappling with the coronavirus disease 2019 (COVID-19) pandemic, the causative agent of which is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 symptoms are similar to the common cold, including fever, sore throat, cough, muscle and chest pain, brain fog, dyspnoea, anosmia, ageusia, and headache. The manifestation of the disease can vary from being asymptomatic to severe life-threatening conditions warranting hospitalization and ventilation support. Furthermore, the emergence of mutecated variants of concern (VOCs) is paramount to the devastating effect of the pandemic. This highly contagious virus and its emergent variants challenge the available advanced viral diagnostic methods for high-accuracy testing with faster result yields. This review is to shed light on the natural history, pathology, molecular biology, and efficient diagnostic methods of COVID-19, detecting SARS-CoV-2 in collected samples. We reviewed the gold standard RT-qPCR method for COVID-19 diagnosis to confer a better understanding and application to combat the COVID-19 pandemic. This comprehensive review may further develop awareness about the management of the COVID-19 pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...