Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 777285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899804

RESUMO

Our group has previously identified the activation of a GRAS transcription factor (TF) gene in the gain-of-function mutant population developed through activation tagging in rice (in an indica rice variety, BPT 5204) that was screened for water use efficiency. This family of GRAS transcription factors has been well known for their diverse roles in gibberellin signaling, light responses, root development, gametogenesis etc. Recent studies indicated their role in biotic and abiotic responses as well. Although this family of TFs received significant attention, not many genes were identified specifically for their roles in mediating stress tolerance in rice. Only OsGRAS23 (here named as OsGRAS22) was reported to code for a TF that induced drought tolerance in rice. In the present study, we have analyzed the expression patterns of rice GRAS TF genes under abiotic (NaCl and ABA treatments) and biotic (leaf samples infected with pathogens, Xanthomonas oryzae pv. oryzae that causes bacterial leaf blight and Rhizoctonia solani that causes sheath blight) stress conditions. In addition, their expression patterns were also analyzed in 13 different developmental stages. We studied their spatio-temporal regulation and correlated them with the in-silico studies. Fully annotated genomic sequences available in rice database have enabled us to study the protein properties, ligand interactions, domain analysis and presence of cis-regulatory elements through the bioinformatic approach. Most of the genes were induced immediately after the onset of stress particularly in the roots of ABA treated plants. OsGRAS39 was found to be a highly expressive gene under sheath blight infection and both abiotic stress treatments while OsGRAS8, OsSHR1 and OsSLR1 were also responsive. Our earlier activation tagging based functional characterization followed by the genome-wide characterization of the GRAS gene family members in the present study clearly show that they are highly appropriate candidate genes for manipulating stress tolerance in rice and other crop plants.

2.
Theor Appl Genet ; 134(7): 2253-2272, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33821294

RESUMO

KEY MESSAGE: XPB2 and SEN1 helicases were identified through activation tagging as potential candidate genes in rice for inducing high water-use efficiency (WUE) and maintaining sustainable yield under drought stress. As a follow-up on the high-water-use-efficiency screening and physiological analyses of the activation-tagged gain-of-function mutant lines that were developed in an indica rice variety, BPT-5204 (Moin et al. in Plant Cell Environ 39:2440-2459, 2016a, https://doi.org/10.1111/pce.12796 ), we have identified two gain-of-function mutant lines (XM3 and SM4), which evidenced the activation of two helicases, ATP-dependent DNA helicase (XPB2) and RNA helicase (SEN1), respectively. We performed the transcript profiling of XPB2 and SEN1 upon exposure to various stress conditions and found their significant upregulation, particularly in ABA and PEG treatments. Extensive morpho-physiological and biochemical analyses based on 24 metrics were performed under dehydration stress (PEG) and phytohormone (ABA) treatments for the wild-type and the two mutant lines. Principal component analysis (PCA) performed on the dataset captured 72.73% of the cumulative variance using the parameters influencing the first two principal components. The tagged mutants exhibited reduced leaf wilting, improved revival efficiency, constant amylose:amylopectin ratio, high chlorophyll and proline contents, profuse tillering, high quantum efficiency and yield-related traits with respect to their controls. These observations were further validated under greenhouse conditions by the periodic withdrawal of water at the pot level. Germination of the seeds of these mutant lines indicated their insensitivity to high ABA concentration. The associated upregulation of stress-specific genes further suggests that their drought tolerance might be because of the coordinated expression of several stress-responsive genes in these two mutants. Altogether, our results provided a firm basis for SEN1 and XPB2 as potential candidates for manipulation of drought tolerance and improving rice performance and yield under limited water conditions.


Assuntos
DNA Helicases/genética , Secas , Oryza/genética , Proteínas de Plantas/genética , RNA Helicases/genética , Mutação com Ganho de Função , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Estresse Fisiológico
3.
Front Plant Sci ; 8: 1553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966624

RESUMO

Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops.

4.
Brief Funct Genomics ; 16(4): 238-247, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137760

RESUMO

The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Mutação com Ganho de Função/genética , Genômica/métodos , Mutagênese/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Elementos de DNA Transponíveis/genética
5.
Front Plant Sci ; 7: 1284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605933

RESUMO

Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2-3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in rice and other crops, which may be achieved by overexpressing and raising independent transgenic plants carrying the genes that became up-regulated significantly and instantaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA