Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108496, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098745

RESUMO

Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.

2.
J Allergy Clin Immunol ; 151(4): 976-990.e5, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36473503

RESUMO

BACKGROUND: Dysregulation of airway smooth muscle cells (ASM) is central to the severity of asthma. Which molecules dominantly control ASM in asthma is unclear. High levels of the cytokine LIGHT (aka TNFSF14) have been linked to asthma severity and lower baseline predicted FEV1 percentage, implying that signals through its receptors might directly control ASM dysfunction. OBJECTIVE: Our study sought to determine whether signaling via lymphotoxin beta receptor (LTßR) or herpesvirus entry mediator from LIGHT dominantly drives ASM hyperreactivity induced by allergen. METHODS: Conditional knockout mice deficient for LTßR or herpesvirus entry mediator in smooth muscle cells were used to determine their role in ASM deregulation and airway hyperresponsiveness (AHR) in vivo. Human ASM were used to study signals induced by LTßR. RESULTS: LTßR was strongly expressed in ASM from normal and asthmatic subjects compared to several other receptors implicated in smooth muscle deregulation. Correspondingly, conditional deletion of LTßR only in smooth muscle cells in smMHCCreLTßRfl/fl mice minimized changes in their numbers and mass as well as AHR induced by house dust mite allergen in a model of severe asthma. Intratracheal LIGHT administration independently induced ASM hypertrophy and AHR in vivo dependent on direct LTßR signals to ASM. LIGHT promoted contractility, hypertrophy, and hyperplasia of human ASM in vitro. Distinguishing LTßR from the receptors for IL-13, TNF, and IL-17, which have also been implicated in smooth muscle dysregulation, LIGHT promoted NF-κB-inducing kinase-dependent noncanonical nuclear factor kappa-light-chain enhancer of activated B cells in ASM in vitro, leading to sustained accumulation of F-actin, phosphorylation of myosin light chain kinase, and contractile activity. CONCLUSIONS: LTßR signals directly and dominantly drive airway smooth muscle hyperresponsiveness relevant for pathogenesis of airway remodeling in severe asthma.


Assuntos
Asma , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Camundongos , Animais , Receptor beta de Linfotoxina/genética , Asma/patologia , Músculo Liso , Miócitos de Músculo Liso/patologia , Camundongos Knockout , Alérgenos , Pulmão/patologia
3.
J Phys Condens Matter ; 51(3)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36343370

RESUMO

We report various phase transitions in half-Heusler TbPtBi compound using density functional theory. Specifically, the inclusion of spin-orbit coupling (SOC) leads to the band inversion resulting in the transition from the metallic to the topological semimetallic phase. However, in the presence of SOC, there is a phase transition from the topological semimetal to the trivial semimetal when the material is subjected to compressive strain-7%. Subsequently, under the further increase of compressive strain(⩾​​-7%), we find an opening of a direct band gap at the point, driving the system from the trivial semimetallic to a semiconducting state with changes in the sequence of the bands. In the absence of SOC, only the transition from the metallic to the semiconducting phase is noticed. Under tensile strain, the TbPtBi compound maintains its phase as in the unstrained condition but with an increase in the hole pocket at the Fermi level, both in the absence and presence of SOC. These tunable phase transitions (especially as a fraction of strain) make this compound very promising for application in various quantum devices, such as highly sensitive strain gauges.

4.
J Phys Condens Matter ; 34(19)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168226

RESUMO

Thermoelectric junctions are often made of components of different materials characterized by distinct transport properties. Single material junctions, with the same type of charge carriers, have also been considered to investigate various classical and quantum effects on the thermoelectric properties of nanostructured materials. We here introduce the concept of defect-induced thermoelectric voltage, namely,thermodefect voltage, in graphene nanoribbon (GNR) junctions under a temperature gradient. Our thermodefect junction is formed by two GNRs with identical properties except the existence of defects in one of the nanoribbons. At room temperature the thermodefect voltage is highly sensitive to the types of defects, their locations, as well as the width and edge configurations of the GNRs. We computationally demonstrate that the thermodefect voltage can be as high as 1.7 mV K-1for 555-777 defects in semiconducting armchair GNRs. We further investigate the Seebeck coefficient, electrical conductance, and electronic thermal conductance, and also the power factor of the individual junction components to explain the thermodefect effect. Taken together, our study presents a new pathway to enhance the thermoelectric properties of nanomaterials.

5.
J Phys Condens Matter ; 29(1): 015301, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27830661

RESUMO

We study transport and zero frequency shot noise properties of a normal metal-superconductor-normal metal (NSN) junction, with the superconductor having mixed singlet and chiral triplet pairings. We show that in the subgapped regime when the chiral triplet pairing amplitude dominates over that of the singlet, a resonance phenomena emerges out at zero energy where all the quantum mechanical scattering probabilities acquire a value of 0.25. At the resonance, crossed Andreev reflection mediating through such junction, acquires a zero energy peak. This reflects as a zero energy peak in the conductance as well depending on the doping concentration. We also investigate shot noise for this system and show that shot noise cross-correlation is negative in the subgapped regime when the triplet pairing dominates over the singlet one. The latter is in sharp contrast to the positive shot noise obtained when the singlet pairing is the dominating one.

6.
Sci Rep ; 6: 32543, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27600958

RESUMO

We propose a simple model quantum network consisting of diamond-shaped plaquettes with deterministic distribution of magnetic and non-magnetic atoms in presence of a uniform external magnetic flux in each plaquette and predict that such a simple model can be a prospective candidate for spin filter as well as flux driven spintronic switch. The orientations and the amplitudes of the substrate magnetic moments play a crucial role in the energy band engineering of the two spin channels which essentially gives us a control over the spin transmission leading to a spin filtering effect. The externally tunable magnetic flux plays an important role in inducing a switch on-switch off effect for both the spin states indicating the behavior like a spintronic switch. Even a correlated disorder configuration in the on-site potentials and in the magnetic moments may lead to disorder-induced spin filtering phenomenon where one of the spin channel gets entirely blocked leaving the other one transmitting over the entire allowed energy regime. All these features are established by evaluating the density of states and the two terminal transmission probabilities using the transfer-matrix formalism within a tight-binding framework. Experimental realization of our theoretical study may be helpful in designing new spintronic devices.

7.
Artigo em Inglês | MEDLINE | ID: mdl-25240147

RESUMO

Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)-H(7A)-O(2), N(7)-H(7B)-O(3), N(1)-H(1)-N(2), C(5)-H(5)-O(3)-S(1) and N(7)-(H7A)-O(2)-S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37×10(4)M(-1). The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.


Assuntos
Sulfametoxazol/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Di-Hidropteroato Sintase/química , Di-Hidropteroato Sintase/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Químicos , Simulação de Acoplamento Molecular , Streptococcus pneumoniae/enzimologia , Sulfametoxazol/metabolismo , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...