Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0215012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30951556

RESUMO

During CD8+ T cell response, Notch signaling controls short-lived-effector-cell (SLEC) generation, but the exact mechanisms by which it does so remains unclear. The Notch signaling pathway can act as a key regulator of Akt signaling via direct transcriptional induction of Hes1, which will then repress the transcription of Pten, an inhibitor of Akt signaling. As both Notch and Akt signaling can promote effector CD8+ T cell differentiation, we asked whether Notch signaling influences SLEC differentiation via the HES1-PTEN axis. Here, we demonstrate that HES1 deficiency in murine CD8+ T cells did not impact SLEC differentiation. Moreover, we show that Pten transcriptional repression in effector CD8+ T cells is not mediated by Notch signaling although Akt activation requires Notch signaling. Therefore, HES1 is not an effector of Notch signaling during CD8+ T cell response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Receptores Notch/imunologia , Transdução de Sinais/imunologia , Fatores de Transcrição HES-1/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/genética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Receptores Notch/genética , Transdução de Sinais/genética , Fatores de Transcrição HES-1/genética
3.
J Immunol ; 194(12): 5654-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25972473

RESUMO

Following an infection, naive CD8(+) T cells expand and differentiate into two main populations of effectors: short-lived effector cells (SLECs) and memory precursor effector cells (MPECs). There is limited understanding of the molecular mechanism and cellular processes governing this cell fate. Notch is a key regulator of cell fate decision relevant in many immunological pathways. In this study, we add to the role of Notch in cell fate decision and demonstrate that the Notch signaling pathway controls the MPEC/SLEC differentiation choice following both Listeria infection and dendritic cell immunization of mice. Although fewer SLECs were generated, Notch deficiency did not alter the rate of memory CD8(+) T cell generation. Moreover, we reveal that the Notch signaling pathway plays a context-dependent role for optimal cytokine production by effector CD8(+) T cells. Together, our results unravel critical functions for the Notch signaling pathway during effector CD8(+) T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Citocinas/biossíntese , Expressão Gênica , Listeria/imunologia , Listeriose/imunologia , Listeriose/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Receptores Notch/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
4.
Plant Cell ; 24(11): 4465-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23175744

RESUMO

Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein-protein, and protein-membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Lignina/metabolismo , Nicotiana/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Coenzima A Ligases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde , Hidroxibenzoatos/metabolismo , Hidroxilação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão , Nicotiana/genética , Transcinamato 4-Mono-Oxigenase/genética , Transgenes
5.
FEBS J ; 279(9): 1576-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21851555

RESUMO

In plants and possibly other organisms, channelling of the reactive intermediates resulting from P450 oxygenation is thought to require the formation of supramolecular complexes associating membrane-bound and soluble enzymes. This implies a most probably loose membrane association of the soluble proteins. For the assessment of such membrane association in vivo, we propose an imaging strategy based on the accurate evaluation of fluorescent protein repartition and distance around endoplasmic reticulum (ER) tubules. It requires candidate protein fusion constructs with fluorescent reporters and transient expression in leaves of Nicotiana benthamiana. The method was tested with soluble eGFP/mRFP1, with various P450 and P450 reductase fluorescent fusions, and with anchored eGFP/mRFP1. It easily differentiated soluble and anchored proteins and detects subtle changes in ER tubules. The method was further assessed with a soluble protein previously shown to be loosely associated with the ER, the phenylalanine ammonia lyase PAL1 involved in the lignin biosynthetic pathway. This protein was found located in close vicinity to the ER. Taken together, these data indicate that the method proposed herein is suitable to monitor membrane association and relocalization of soluble proteins involved in the formation of metabolons.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Retículo Endoplasmático/enzimologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal/métodos , Fenilalanina Amônia-Liase/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Sensibilidade e Especificidade , Transcinamato 4-Mono-Oxigenase/metabolismo
6.
Plant Physiol ; 132(3): 1707-15, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857849

RESUMO

The NADPH/NADP-thioredoxin (Trx) reductase (NTR)/Trx system (NTS) is a redox system that plays a posttranslational regulatory role by reducing protein targets involved in crucial cellular processes in microorganisms and animals. In plants, the system includes several h type Trx isoforms and has been shown to intervene in reserve mobilization during early seedling growth of cereals. To determine whether NTS was operational during germination of legume seeds and which Trx h isoforms could be implicated, Trx h isoforms expression was monitored in germinating pea (Pisum sativum cv Baccara) seeds, together with the amount of NTR and NADPH. Two new isoforms were identified: Trx h3, similar to the two isoforms already described in pea but not expressed in seeds; and the more divergent isoform, Trx h4. Active recombinant proteins were produced in Escherichia coli and used to raise specific antibodies. The expression of new isoforms was analyzed at both mRNA and protein levels. The lack of correlation between mRNA and protein abundances suggests the occurrence of posttranscriptional regulation. Trx h3 protein amount remained constant in both axes and cotyledons of dry and imbibed seeds but then decreased 2 d after radicle protrusion. In contrast, Trx h4 was only expressed in axes of dry and imbibed seeds but not in germinated seeds or in seedlings, therefore appearing as closely linked to germination. The presence of NTR and NADPH in seeds suggests that NTS could be functional during germination. The possible role of Trx h3 and h4 in this context is discussed.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Pisum sativum/genética , Tiorredoxinas/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , NADP/metabolismo , Pisum sativum/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiorredoxina h , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Água/metabolismo
7.
Plant J ; 32(4): 481-93, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12445120

RESUMO

Implication of the ubiquitous, highly conserved, Ca2+ sensor calmodulin (CaM) in pea seed germination has been investigated. Mass spectrometry analysis of purified CaM revealed the coexistence in seeds of three protein isoforms, diverging from each other by single amino acid substitution in the N-terminal alpha-helix. CaM was shown to be encoded by a small multigenic family, and full-length cDNAs of the three isoforms (PsCaM1, 2 and 3) were isolated to allow the design of specific primers in more divergent 5' and 3' untranslated regions. Expression studies, performed by semiquantitative RT-PCR, demonstrated differential expression patterns of the three transcripts during germination. PsCaM1 and 2 were detected at different levels in dry axes and cotyledons, and they accumulated during imbibition and prior to radicle protrusion. In contrast, PsCaM3 appeared only upon radicle protrusion, then gradually increased in both tissues. To characterise the biochemical properties of the CaM isoforms, functional analyses were conducted in vitro using recombinant Strep-tagged proteins (CaM1-ST, CaM2-ST and CaM3-ST) expressed in Escherichia coli. Gel mobility shift assays revealed that CaM1-ST exhibited a stoichiometric binding of a synthetic amphiphilic CaM kinase II peptide while CaM2-ST and CaM3-ST affinities for the same peptide were reduced. Affinity differences were also observed for CaM isoform binding to Trp-3, an idealised helical CaM-binding peptide. However, the three proteins activated in the same way the CaM-dependent pea NAD kinase. Finally, the significance of the single substitutions upon CaM interaction with its targets is discussed in a structural context.


Assuntos
Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Pisum sativum/genética , Pisum sativum/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sequência de Bases , Calmodulina/química , Calmodulina/genética , Clonagem Molecular , Escherichia coli , Modelos Moleculares , Família Multigênica , Mutação , Pisum sativum/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...