Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38392122

RESUMO

Powered ankle prostheses have been proven to improve the walking economy of people with transtibial amputation. All commercial powered ankle prostheses that are currently available can only perform one-degree-of-freedom motion in a limited range. However, studies have shown that the frontal plane motion during ambulation is associated with balancing. In addition, as more advanced neural interfaces have become available for people with amputation, it is possible to fully recover ankle function by combining neural signals and a robotic ankle. Accordingly, there is a need for a powered ankle prosthesis that can have active control on not only plantarflexion and dorsiflexion but also eversion and inversion. We designed, built, and evaluated a two-degree-of-freedom (2-DoF) powered ankle-foot prosthesis that is untethered and can support level-ground walking. Benchtop tests were conducted to characterize the dynamics of the system. Walking trials were performed with a 77 kg subject that has unilateral transtibial amputation to evaluate system performance under realistic conditions. Benchtop tests demonstrated a step response rise time of less than 50 milliseconds for a torque of 40 N·m on each actuator. The closed-loop torque bandwidth of the actuator is 9.74 Hz. Walking trials demonstrated torque tracking errors (root mean square) of less than 7 N·m. These results suggested that the device can perform adequate torque control and support level-ground walking. This prosthesis can serve as a platform for studying biomechanics related to balance and has the possibility of further recovering the biological function of the ankle-subtalar-foot complex beyond the existing powered ankles.

2.
Nat Biomed Eng ; 4(10): 941-953, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33020601

RESUMO

In individuals with lower-limb amputations, robotic prostheses can increase walking speed, and reduce energy use, the incidence of falls and the development of secondary complications. However, safe and reliable prosthetic-limb control strategies for robust ambulation in real-world settings remain out of reach, partly because control strategies have been tested with different robotic hardware in constrained laboratory settings. Here, we report the design and clinical implementation of an integrated robotic knee-ankle prosthesis that facilitates the real-world testing of its biomechanics and control strategies. The bionic leg is open source, it includes software for low-level control and for communication with control systems, and its hardware design is customizable, enabling reduction in its mass and cost, improvement in its ease of use and independent operation of the knee and ankle joints. We characterized the electromechanical and thermal performance of the bionic leg in benchtop testing, as well as its kinematics and kinetics in three individuals during walking on level ground, ramps and stairs. The open-source integrated-hardware solution and benchmark data that we provide should help with research and clinical testing of knee-ankle prostheses in real-world environments.


Assuntos
Biônica , Prótese Articular , Software , Fenômenos Biomecânicos , Impedância Elétrica , Desenho de Equipamento , Humanos , Prótese do Joelho
3.
Sci Transl Med ; 10(443)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848665

RESUMO

Humans can precisely sense the position, speed, and torque of their body parts. This sense is known as proprioception and is essential to human motor control. Although there have been many attempts to create human-mechatronic interactions, there is still no robust, repeatable methodology to reflect proprioceptive information from a synthetic device onto the nervous system. To address this shortcoming, we present an agonist-antagonist myoneural interface (AMI). The AMI is composed of (i) a surgical construct made up of two muscle-tendons-an agonist and an antagonist-surgically connected in series so that contraction of one muscle stretches the other and (ii) a bidirectional efferent-afferent neural control architecture. The AMI preserves the dynamic muscle relationships that exist within native anatomy, thereby allowing proprioceptive signals from mechanoreceptors within both muscles to be communicated to the central nervous system. We surgically constructed two AMIs within the residual limb of a subject with a transtibial amputation. Each AMI sends control signals to one joint of a two-degree-of-freedom ankle-foot prosthesis and provides proprioceptive information pertaining to the movement of that joint. The AMI subject displayed improved control over the prosthesis compared to a group of four subjects having traditional amputation. We also show natural reflexive behaviors during stair ambulation in the AMI subject that do not appear in the cohort of subjects with traditional amputation. In addition, we demonstrate a system for closed-loop joint torque control in AMI subjects. These results provide a framework for integrating bionic systems with human physiology.


Assuntos
Membros Artificiais , Extremidade Inferior/fisiopatologia , Próteses Neurais , Propriocepção/fisiologia , Adulto , Tornozelo/fisiopatologia , Marcha , Humanos , Articulações/fisiopatologia , Masculino , Pessoa de Meia-Idade , Subida de Escada , Torque
4.
IEEE Trans Neural Syst Rehabil Eng ; 25(5): 426-435, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27244744

RESUMO

Biomechanical tissue properties have been hypothesized to play a critical role in the quantification of prosthetic socket production for individuals with limb amputation. In this investigation, a novel indenter platform is presented and its performance evaluated for the purposes of residual-limb tissue characterization. The indenter comprised 14 position- and force-controllable actuators that circumferentially surround a biological residuum to form an actuator ring. Each indenter actuator was individually controllable in position ( [Formula: see text] accuracy) and force (330 mN accuracy) at a PC controller feedback rate of 500 Hz, allowing for a range of measurement across a residual stump. Data were collected from 162 sensors over an EtherCAT fieldbus to characterize the mechanical hyperviscoelastic tissue response of two transtibial residual-limbs from a study participant with bilateral amputations. At five distinct anatomical locations across the residual-limb, force versus deflection data-including hyperviscoelastic tissue properties-are presented, demonstrating the accuracy and versatility of the multi-indenter platform for residual-limb tissue characterization.


Assuntos
Cotos de Amputação/fisiopatologia , Módulo de Elasticidade , Testes de Dureza/instrumentação , Palpação/instrumentação , Estimulação Física/instrumentação , Viscosidade , Desenho de Equipamento , Análise de Falha de Equipamento , Testes de Dureza/métodos , Humanos , Articulação do Joelho/fisiopatologia , Sistemas Microeletromecânicos/instrumentação , Sistemas Microeletromecânicos/métodos , Estimulação Física/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA